References
- D. Kriebel, J. Tickner, P. Epstein, J. Lemons, R. Levins,
E.L. Loechler, M. Quinn, R. Rudel, T. Schettler, M. Stoto, The
precautionary principle in environmental science, Environ.
Health Perspect., 109 (2001) 871–876.
- S. Wang, J. Wu, X. Lu, W. Xu, Q. Gong, J. Ding, B. Dan, P. Xie,
Removal of acetaminophen in the Fe2+/persulfate system:
kinetic model and degradation pathways, Chem. Eng. J.,
358 (2019) 1091–1100.
- A.E. Aiello, E. Larson, Antibacterial cleaning and hygiene
products as an emerging risk factor for antibiotic resistance in
the community, Lancet Infect. Dis., 3 (2003) 501–506.
- R. Chuanchuen, K. Beinlich, T.T. Hoang, A. Becher,
R.R. Karkhoff-Schweizer, H.P. Schweizer, Cross-resistance
between triclosan and antibiotics in Pseudomonas aeruginosa is
mediated by multidrug efflux pumps: exposure of a susceptible
mutant strain to triclosan selects nfxB mutants overexpressing
MexCD-OprJ, Antimicrob. Agents Chemother., 45 (2001) 428–432.
- Y.-M. Kim, K. Murugesan, S. Schmidt, V. Bokare,
J.-R. Jeon, E.-J. Kim, Y.-S. Chang, Triclosan susceptibility and
co-metabolism–a comparison for three aerobic pollutantdegrading
bacteria, Bioresour. Technol., 102 (2011) 2206–2212.
- Z. Song, N. Wang, L. Zhu, A. Huang, X. Zhao, H. Tang, Efficient
oxidative degradation of triclosan by using an enhanced
Fenton-like process, Chem. Eng. J., 198 (2012) 379–387.
- H. Singer, S. Müller, C. Tixier, L. Pillonel, Triclosan: occurrence
and fate of a widely used biocide in the aquatic environment:
field measurements in wastewater treatment plants, surface
waters, and lake sediments, Environ. Sci. Technol., 36 (2002)
4998–5004.
- F. Tohidi, Z. Cai, Fate and mass balance of triclosan and its
degradation products: comparison of three different types of
wastewater treatments and aerobic/anaerobic sludge digestion,
J. Hazard. Mater., 323 (2017) 329–340.
- D.E. Latch, J.L. Packer, B.L. Stender, J. VanOverbeke,
W.A. Arnold, K. McNeill, Aqueous photochemistry of triclosan:
formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin,
and oligomerization products, Environ. Toxicol. Chem., 24
(2005) 517–525.
- C. Liyanapatirana, S.R. Gwaltney, K. Xia, Transformation of
triclosan by Fe(III)-saturated montmorillonite, Environ. Sci.
Technol., 44 (2010) 668–674.
- M.J. Martin de Vidales, C. Sáez, P. Cañizares, M.A. Rodrigo,
Removal of triclosan by conductive-diamond electrolysis
and sonoelectrolysis, J. Chem. Technol. Biotechnol., 88 (2013)
823–828.
- Y. Liu, X. Zhu, F. Qian, S. Zhang, J. Chen, Magnetic activated
carbon prepared from rice straw-derived hydrochar for
triclosan removal, RSC Adv., 4 (2014) 63620–63626.
- T.A. Ternes, J. Stüber, N. Herrmann, D. McDowell, A. Ried,
M. Kampmann, B. Teiser, Ozonation: a tool for removal of
pharmaceuticals, contrast media and musk fragrances from
wastewater?, Water Res., 37 (2003) 1976–1982.
- S. Suarez, M.C. Dodd, F. Omil, U. von Gunten, Kinetics of
triclosan oxidation by aqueous ozone and consequent loss
of antibacterial activity: relevance to municipal wastewater
ozonation, Water Res., 41 (2007) 2481–2490.
- J. Jiang, S.-Y. Pang, J. Ma, Oxidation of triclosan by permanganate
(Mn(VII)): importance of ligands and in situ formed
manganese oxides, Environ. Sci. Technol., 43 (2009)
8326–8331.
- C. Cai, Z. Zhang, H. Zhang, Electro-assisted heterogeneous
activation of persulfate by Fe/SBA-15 for the degradation of
Orange II, J. Hazard. Mater., 313 (2016) 209–218.
- J.E. Silveira, A.L. Garcia-Costa, T.O. Cardoso, J.A. Zazo,
J.A. Casas, Indirect decolorization of azo dye Disperse Blue 3
by electro-activated persulfate, Electrochim. Acta, 258 (2017)
927–932.
- J. Li, Y. Ren, L. Lai, B. Lai, Electrolysis assisted persulfate with
annular iron sheet as anode for the enhanced degradation of
2, 4-dinitrophenol in aqueous solution, J. Hazard. Mater.,
344 (2018) 778–787.
- B.-T. Zhang, Y. Zhang, Y. Teng, M. Fan, Sulfate radical and
its application in decontamination technologies, Crit. Rev.
Environ. Sci. Technol., 45 (2015) 1756–1800.
- M. Ahmadi, F. Ghanbari, Optimizing COD removal from
greywater by photoelectro-persulfate process using Box-Behnken design: assessment of effluent quality and electrical
energy consumption, Environ. Sci. Pollut. Res., 23 (2016)
19350–19361.
- S. Rodriguez, A. Santos, A. Romero, F. Vicente, Kinetic of
oxidation and mineralization of priority and emerging
pollutants by activated persulfate, Chem. Eng. J., 213 (2012)
225–234.
- Y.-C. Lee, S.-L. Lo, P.-T. Chiueh, D.-G. Chang, Efficient
decomposition of perfluorocarboxylic acids in aqueous solution
using microwave-induced persulfate, Water Res., 43 (2009)
2811–2816.
- L. Bu, S. Zhou, Z. Shi, C. Bi, S. Zhu, N. Gao, Iron electrode as
efficient persulfate activator for oxcarbazepine degradation:
performance, mechanism, and kinetic modeling, Sep. Purif.
Technol., 178 (2017) 66–74.
- A. Long, H. Zhang, Selective oxidative degradation of toluene
for the recovery of surfactant by an electro/Fe2+/persulfate
process, Environ. Sci. Pollut. Res., 22 (2015) 11606–11616.
- R.H. Waldemer, P.G. Tratnyek, R.L. Johnson, J.T. Nurmi,
Oxidation of chlorinated ethenes by heat-activated persulfate:
kinetics and products, Environ. Sci. Technol., 41 (2007)
1010–1015.
- M.R. Samarghandi, M. Leili, K. Godini, J. Mehralipour, R. Harati,
Furfural removal from synthetic wastewater by persulfate
anion activated with electrical current: energy consumption
and operating costs optimization, Der Pharma Chem., 7 (2015)
48–57.
- F. Ghanbari, M. Moradi, A. Eslami, M.M. Emamjomeh,
Electrocoagulation/flotation of textile wastewater with
simultaneous application of aluminum and iron as anode,
Environ. Process., 1 (2014) 447–457.
- O. Sahu, B. Mazumdar, P. Chaudhari, Treatment of wastewater
by electrocoagulation: a review, Environ. Sci. Pollut. Res.,
21 (2014) 2397–2413.
- N. Bektaş, H. Akbulut, H. Inan, A. Dimoglo, Removal of
phosphate from aqueous solutions by electro-coagulation,
J. Hazard. Mater., 106 (2004) 101–105.
- X.-R. Xu, X.-Z. Li, Degradation of azo dye Orange G in aqueous
solutions by persulfate with ferrous ion, Sep. Purif. Technol.,
72 (2010) 105–111.
- E. Bazrafshan, A.H. Mahvi, S. Naseri, A.R. Mesdaghinia,
Performance evaluation of electrocoagulation process for
removal of chromium(VI) from synthetic chromium solutions
using iron and aluminum electrodes, Turk. J. Eng. Environ. Sci.,
32 (2008) 59–66.
- H. Song, L. Yan, J. Jiang, J. Ma, Z. Zhang, J. Zhang, P. Liu,
T. Yang, Electrochemical activation of persulfates at BDD
anode: radical or nonradical oxidation?, Water Res., 128 (2018)
393–401.
- L. Bu, S. Zhu, S. Zhou, Degradation of atrazine by
electrochemically activated persulfate using BDD anode: role
of radicals and influencing factors, Chemosphere, 195 (2018)
236–244.
- L. Wang, Y. Liu, C. Wang, X. Zhao, G.D. Mahadeva, Y. Wu, J. Ma,
F. Zhao, Anoxic biodegradation of triclosan and the removal of
its antimicrobial effect in microbial fuel cells, J. Hazard. Mater.,
344 (2018) 669–678.
- K.S. Hashim, A. Shaw, R. Al Khaddar, M.O. Pedrola, D. Phipps,
Iron removal, energy consumption and operating cost of
electrocoagulation of drinking water using a new flow column
reactor, J. Environ. Manage., 189 (2017) 98–108.
- F. Ozyonar, S. Aksoy, Removal of salicylic acid from aqueous
solutions using various electrodes and different connection
modes by electrocoagulation, Int. J. Electrochem. Sci., 11 (2016)
3680–3696.
- A. Rastogi, S.R. Al-Abed, D.D. Dionysiou, Sulfate radicalbased
ferrous–peroxymonosulfate oxidative system for PCBs
degradation in aqueous and sediment systems, Appl. Catal. B,
85 (2009) 171–179.
- S. Hammami, N. Oturan, N. Bellakhal, M. Dachraoui,
M.A. Oturan, Oxidative degradation of direct orange 61 by
electro-Fenton process using a carbon felt electrode: application
of the experimental design methodology, J. Electroanal. Chem.,
610 (2007) 75–84.
- N. Jaafarzadeh, M. Omidinasab, F. Ghanbari, Combined
electrocoagulation and UV-based sulfate radical oxidation
processes for treatment of pulp and paper wastewater, Process
Saf. Environ. Protect., 102 (2016) 462–472.
- A. Romero, A. Santos, F. Vicente, C. González, Diuron abatement
using activated persulphate: effect of pH, Fe (II) and oxidant
dosage, Chem. Eng. J., 162 (2010) 257–265.
- H. Lin, H. Zhang, L. Hou, Degradation of CI Acid Orange
7 in aqueous solution by a novel electro/Fe3O4/PDS process,
J. Hazard. Mater., 276 (2014) 182–191.
- K. Godini, G. Azarian, D. Nematollahi, A. Rahmani,
H. Zolghadrnasab, Electrochemical treatment of poultry
slaughterhouse
wastewater using iron and aluminium
electrodes, Res. J. Chem. Environ., 16 (2012) 98–103.
- S. Farhadi, B. Aminzadeh, A. Torabian, V. Khatibikamal, M.A.
Fard, Comparison of COD removal from pharmaceutical
wastewater by electrocoagulation, photoelectrocoagulation,
peroxi-electrocoagulation and peroxi-photoelectrocoagulation
processes, J. Hazard. Mater., 219 (2012) 35–42.
- E. Bazrafshan, H. Biglari, A.H. Mahvi, Humic acid removal
from aqueous environments by electrocoagulation process
using iron electrodes, E-J. Chem., 9 (2012) 2453–2461.
- W. Yang, G. Liu, Y. Chen, D. Miao, Q. Wei, H. Li, L. Ma, K. Zhou,
L. Liu, Z. Yu, Persulfate enhanced electrochemical oxidation
of highly toxic cyanide-containing organic wastewater using
boron-doped diamond anode, Chemosphere, 252 (2020)
126499.
- F. Sepyani, R.D.C. Soltani, S. Jorfi, H. Godini, M. Safari,
Implementation of continuously electro-generated Fe3O4
nanoparticles for activation of persulfate to decompose
amoxicillin antibiotic in aquatic media: UV254 and ultrasound
intensification, J. Environ. Manage., 224 (2018) 315–326.
- A.R. Rahmani, H. Rezaeivahidian, M. Almasi, A. Shabanlo,
H. Almasi, A comparative study on the removal of phenol from
aqueous solutions by electro–Fenton and electro–persulfate
processes using iron electrodes, Res. Chem. Intermed., 42 (2016)
1441–1450.
- J. Liu, S. Zhong, Y. Song, B. Wang, F. Zhang, Degradation of
tetracycline hydrochloride by electro-activated persulfate
oxidation, J. Electroanal. Chem., 809 (2018) 74–79.
- H. Lin, J. Wu, H. Zhang, Degradation of clofibric acid in
aqueous solution by an EC/Fe3+/PMS process, Chem. Eng. J.,
244 (2014) 514–521.
- Y. Long, Y. Feng, X. Li, N. Suo, H. Chen, Z. Wang, Y. Yu, Removal
of diclofenac by three-dimensional electro-Fenton-persulfate
(3D electro-Fenton-PS), Chemosphere, 219 (2019) 1024–1031.
- J. Monteagudo, A. Durán, R. González, A. Expósito, In situ
chemical oxidation of carbamazepine solutions using persulfate
simultaneously activated by heat energy, UV light, Fe2+
ions, and H2O2, Appl. Catal. B, 176 (2015) 120–129.
- M. Keramati, B. Ayati, Petroleum wastewater treatment and
optimization of effective parameters using electrocoagulation
process, Modares Civil Eng. J., 18 (2019) 177–187.
- M. AhmadiMoghadam, H. Amiri, Investigation of TOC removal
from industrial wastewaters using electrocoagulation process,
Iran. J. Health Environ., 3 (2010) 185–194.
- A. Ghalwa, M. Nasser, N. Farhat, Removal of abamectin
pesticide by electrocoagulation process using stainless steel and
iron electrodes, J. Environ. Anal. Chem., 2 (2015) 134.
- G. Chen, Electrochemical technologies in wastewater treatment,
Sep. Purif. Technol., 38 (2004) 11–41.
- G.-D. Fang, D.D. Dionysiou, Y. Wang, S.R. Al-Abed, D.-M.
Zhou, Sulfate radical-based degradation of polychlorinated
biphenyls: effects of chloride ion and reaction kinetics, J.
Hazard. Mater., 227 (2012) 394–401.
- R.S. Magazinovic, B.C. Nicholson, D.E. Mulcahy, D.E. Davey,
Bromide levels in natural waters: its relationship to levels of
both chloride and total dissolved solids and the implications
for water treatment, Chemosphere, 57 (2004) 329–335.
- H. Shemer, K.G. Linden, Degradation and by-product formation
of diazinon in water during UV and UV/H2O2 treatment,
J. Hazard. Mater., 136 (2006) 553–559.
- Y.Q. Zhang, W.L. Huang, D.E. Fennell, In situ chemical
oxidation of aniline by persulfate with iron(II) activation at
ambient temperature, Chin. Chem. Lett., 21 (2010) 911–913.
- J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial,
P. Drogui, J. Naja, Electrocoagulation process in water
treatment: a review of electrocoagulation modeling approaches,
Desalination, 404 (2017) 1–21.
- V. Khandegar, A.K. Saroha, Electrocoagulation for the treatment
of textile industry effluent–a review, J. Environ. Manage.,
128 (2013) 949–963.
- J. de Oliveira Silva, G. Rodrigues Filho, C. da Silva Meireles,
S.D. Ribeiro, J.G. Vieira, C.V. da Silva, D.A. Cerqueira,
Thermal analysis and FTIR studies of sewage sludge
produced in treatment plants. The case of sludge in the city
of Uberlândia-MG, Brazil, Thermochim. Acta, 528 (2012) 72–75.
- H. Zhao, D. Zhang, P. Du, H. Li, C. Liu, Y. Li, H. Cao,
J.C. Crittenden, Q. Huang, A combination of electro-enzymatic
catalysis and electrocoagulation for the removal of endocrine
disrupting chemicals from water, J. Hazard. Mater., 297 (2015)
269–277.
- P. Song, Z. Yang, H. Xu, J. Huang, X. Yang, L. Wang, Investigation
of influencing factors and mechanism of antimony and
arsenic removal by electrocoagulation using Fe–Al electrodes,
Ind. Eng. Chem. Res., 53 (2014) 12911–12919.
- M. Nasrullah, L. Singh, S. Krishnan, M. Sakinah, A. Zularisam,
Electrode design for electrochemical cell to treat palm oil
mill effluent by electrocoagulation process, Environ. Technol.
Innov., 9 (2018) 323–341.
- S. Irki, D. Ghernaout, M.W. Naceur, A. Alghamdi, M. Aichouni,
Decolorizing methyl orange by Fe-electrocoagulation
process—a mechanistic insight, Int. J. Environ. Chem.,
2 (2018) 18.