References

  1. D. Kriebel, J. Tickner, P. Epstein, J. Lemons, R. Levins, E.L. Loechler, M. Quinn, R. Rudel, T. Schettler, M. Stoto, The precautionary principle in environmental science, Environ. Health Perspect., 109 (2001) 871–876.
  2. S. Wang, J. Wu, X. Lu, W. Xu, Q. Gong, J. Ding, B. Dan, P. Xie, Removal of acetaminophen in the Fe2+/persulfate system: kinetic model and degradation pathways, Chem. Eng. J., 358 (2019) 1091–1100.
  3. A.E. Aiello, E. Larson, Antibacterial cleaning and hygiene products as an emerging risk factor for antibiotic resistance in the community, Lancet Infect. Dis., 3 (2003) 501–506.
  4. R. Chuanchuen, K. Beinlich, T.T. Hoang, A. Becher, R.R. Karkhoff-Schweizer, H.P. Schweizer, Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ, Antimicrob. Agents Chemother., 45 (2001) 428–432.
  5. Y.-M. Kim, K. Murugesan, S. Schmidt, V. Bokare, J.-R. Jeon, E.-J. Kim, Y.-S. Chang, Triclosan susceptibility and co-metabolism–a comparison for three aerobic pollutantdegrading bacteria, Bioresour. Technol., 102 (2011) 2206–2212.
  6. Z. Song, N. Wang, L. Zhu, A. Huang, X. Zhao, H. Tang, Efficient oxidative degradation of triclosan by using an enhanced Fenton-like process, Chem. Eng. J., 198 (2012) 379–387.
  7. H. Singer, S. Müller, C. Tixier, L. Pillonel, Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments, Environ. Sci. Technol., 36 (2002) 4998–5004.
  8. F. Tohidi, Z. Cai, Fate and mass balance of triclosan and its degradation products: comparison of three different types of wastewater treatments and aerobic/anaerobic sludge digestion, J. Hazard. Mater., 323 (2017) 329–340.
  9. D.E. Latch, J.L. Packer, B.L. Stender, J. VanOverbeke, W.A. Arnold, K. McNeill, Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products, Environ. Toxicol. Chem., 24 (2005) 517–525.
  10. C. Liyanapatirana, S.R. Gwaltney, K. Xia, Transformation of triclosan by Fe(III)-saturated montmorillonite, Environ. Sci. Technol., 44 (2010) 668–674.
  11. M.J. Martin de Vidales, C. Sáez, P. Cañizares, M.A. Rodrigo, Removal of triclosan by conductive-diamond electrolysis and sonoelectrolysis, J. Chem. Technol. Biotechnol., 88 (2013) 823–828.
  12. Y. Liu, X. Zhu, F. Qian, S. Zhang, J. Chen, Magnetic activated carbon prepared from rice straw-derived hydrochar for triclosan removal, RSC Adv., 4 (2014) 63620–63626.
  13. T.A. Ternes, J. Stüber, N. Herrmann, D. McDowell, A. Ried, M. Kampmann, B. Teiser, Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater?, Water Res., 37 (2003) 1976–1982.
  14. S. Suarez, M.C. Dodd, F. Omil, U. von Gunten, Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: relevance to municipal wastewater ozonation, Water Res., 41 (2007) 2481–2490.
  15. J. Jiang, S.-Y. Pang, J. Ma, Oxidation of triclosan by permanganate (Mn(VII)): importance of ligands and in situ formed manganese oxides, Environ. Sci. Technol., 43 (2009) 8326–8331.
  16. C. Cai, Z. Zhang, H. Zhang, Electro-assisted heterogeneous activation of persulfate by Fe/SBA-15 for the degradation of Orange II, J. Hazard. Mater., 313 (2016) 209–218.
  17. J.E. Silveira, A.L. Garcia-Costa, T.O. Cardoso, J.A. Zazo, J.A. Casas, Indirect decolorization of azo dye Disperse Blue 3 by electro-activated persulfate, Electrochim. Acta, 258 (2017) 927–932.
  18. J. Li, Y. Ren, L. Lai, B. Lai, Electrolysis assisted persulfate with annular iron sheet as anode for the enhanced degradation of 2, 4-dinitrophenol in aqueous solution, J. Hazard. Mater., 344 (2018) 778–787.
  19. B.-T. Zhang, Y. Zhang, Y. Teng, M. Fan, Sulfate radical and its application in decontamination technologies, Crit. Rev. Environ. Sci. Technol., 45 (2015) 1756–1800.
  20. M. Ahmadi, F. Ghanbari, Optimizing COD removal from greywater by photoelectro-persulfate process using Box-Behnken design: assessment of effluent quality and electrical energy consumption, Environ. Sci. Pollut. Res., 23 (2016) 19350–19361.
  21. S. Rodriguez, A. Santos, A. Romero, F. Vicente, Kinetic of oxidation and mineralization of priority and emerging pollutants by activated persulfate, Chem. Eng. J., 213 (2012) 225–234.
  22. Y.-C. Lee, S.-L. Lo, P.-T. Chiueh, D.-G. Chang, Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate, Water Res., 43 (2009) 2811–2816.
  23. L. Bu, S. Zhou, Z. Shi, C. Bi, S. Zhu, N. Gao, Iron electrode as efficient persulfate activator for oxcarbazepine degradation: performance, mechanism, and kinetic modeling, Sep. Purif. Technol., 178 (2017) 66–74.
  24. A. Long, H. Zhang, Selective oxidative degradation of toluene for the recovery of surfactant by an electro/Fe2+/persulfate process, Environ. Sci. Pollut. Res., 22 (2015) 11606–11616.
  25. R.H. Waldemer, P.G. Tratnyek, R.L. Johnson, J.T. Nurmi, Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products, Environ. Sci. Technol., 41 (2007) 1010–1015.
  26. M.R. Samarghandi, M. Leili, K. Godini, J. Mehralipour, R. Harati, Furfural removal from synthetic wastewater by persulfate anion activated with electrical current: energy consumption and operating costs optimization, Der Pharma Chem., 7 (2015) 48–57.
  27. F. Ghanbari, M. Moradi, A. Eslami, M.M. Emamjomeh, Electrocoagulation/flotation of textile wastewater with simultaneous application of aluminum and iron as anode, Environ. Process., 1 (2014) 447–457.
  28. O. Sahu, B. Mazumdar, P. Chaudhari, Treatment of wastewater by electrocoagulation: a review, Environ. Sci. Pollut. Res., 21 (2014) 2397–2413.
  29. N. Bektaş, H. Akbulut, H. Inan, A. Dimoglo, Removal of phosphate from aqueous solutions by electro-coagulation, J. Hazard. Mater., 106 (2004) 101–105.
  30. X.-R. Xu, X.-Z. Li, Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion, Sep. Purif. Technol., 72 (2010) 105–111.
  31. E. Bazrafshan, A.H. Mahvi, S. Naseri, A.R. Mesdaghinia, Performance evaluation of electrocoagulation process for removal of chromium(VI) from synthetic chromium solutions using iron and aluminum electrodes, Turk. J. Eng. Environ. Sci., 32 (2008) 59–66.
  32. H. Song, L. Yan, J. Jiang, J. Ma, Z. Zhang, J. Zhang, P. Liu, T. Yang, Electrochemical activation of persulfates at BDD anode: radical or nonradical oxidation?, Water Res., 128 (2018) 393–401.
  33. L. Bu, S. Zhu, S. Zhou, Degradation of atrazine by electrochemically activated persulfate using BDD anode: role of radicals and influencing factors, Chemosphere, 195 (2018) 236–244.
  34. L. Wang, Y. Liu, C. Wang, X. Zhao, G.D. Mahadeva, Y. Wu, J. Ma, F. Zhao, Anoxic biodegradation of triclosan and the removal of its antimicrobial effect in microbial fuel cells, J. Hazard. Mater., 344 (2018) 669–678.
  35. K.S. Hashim, A. Shaw, R. Al Khaddar, M.O. Pedrola, D. Phipps, Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor, J. Environ. Manage., 189 (2017) 98–108.
  36. F. Ozyonar, S. Aksoy, Removal of salicylic acid from aqueous solutions using various electrodes and different connection modes by electrocoagulation, Int. J. Electrochem. Sci., 11 (2016) 3680–3696.
  37. A. Rastogi, S.R. Al-Abed, D.D. Dionysiou, Sulfate radicalbased ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems, Appl. Catal. B, 85 (2009) 171–179.
  38. S. Hammami, N. Oturan, N. Bellakhal, M. Dachraoui, M.A. Oturan, Oxidative degradation of direct orange 61 by electro-Fenton process using a carbon felt electrode: application of the experimental design methodology, J. Electroanal. Chem., 610 (2007) 75–84.
  39. N. Jaafarzadeh, M. Omidinasab, F. Ghanbari, Combined electrocoagulation and UV-based sulfate radical oxidation processes for treatment of pulp and paper wastewater, Process Saf. Environ. Protect., 102 (2016) 462–472.
  40. A. Romero, A. Santos, F. Vicente, C. González, Diuron abatement using activated persulphate: effect of pH, Fe (II) and oxidant dosage, Chem. Eng. J., 162 (2010) 257–265.
  41. H. Lin, H. Zhang, L. Hou, Degradation of CI Acid Orange 7 in aqueous solution by a novel electro/Fe3O4/PDS process, J. Hazard. Mater., 276 (2014) 182–191.
  42. K. Godini, G. Azarian, D. Nematollahi, A. Rahmani, H. Zolghadrnasab, Electrochemical treatment of poultry slaughterhouse wastewater using iron and aluminium electrodes, Res. J. Chem. Environ., 16 (2012) 98–103.
  43. S. Farhadi, B. Aminzadeh, A. Torabian, V. Khatibikamal, M.A. Fard, Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes, J. Hazard. Mater., 219 (2012) 35–42.
  44. E. Bazrafshan, H. Biglari, A.H. Mahvi, Humic acid removal from aqueous environments by electrocoagulation process using iron electrodes, E-J. Chem., 9 (2012) 2453–2461.
  45. W. Yang, G. Liu, Y. Chen, D. Miao, Q. Wei, H. Li, L. Ma, K. Zhou, L. Liu, Z. Yu, Persulfate enhanced electrochemical oxidation of highly toxic cyanide-containing organic wastewater using boron-doped diamond anode, Chemosphere, 252 (2020) 126499.
  46. F. Sepyani, R.D.C. Soltani, S. Jorfi, H. Godini, M. Safari, Implementation of continuously electro-generated Fe3O4 nanoparticles for activation of persulfate to decompose amoxicillin antibiotic in aquatic media: UV254 and ultrasound intensification, J. Environ. Manage., 224 (2018) 315–326.
  47. A.R. Rahmani, H. Rezaeivahidian, M. Almasi, A. Shabanlo, H. Almasi, A comparative study on the removal of phenol from aqueous solutions by electro–Fenton and electro–persulfate processes using iron electrodes, Res. Chem. Intermed., 42 (2016) 1441–1450.
  48. J. Liu, S. Zhong, Y. Song, B. Wang, F. Zhang, Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation, J. Electroanal. Chem., 809 (2018) 74–79.
  49. H. Lin, J. Wu, H. Zhang, Degradation of clofibric acid in aqueous solution by an EC/Fe3+/PMS process, Chem. Eng. J., 244 (2014) 514–521.
  50. Y. Long, Y. Feng, X. Li, N. Suo, H. Chen, Z. Wang, Y. Yu, Removal of diclofenac by three-dimensional electro-Fenton-persulfate (3D electro-Fenton-PS), Chemosphere, 219 (2019) 1024–1031.
  51. J. Monteagudo, A. Durán, R. González, A. Expósito, In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2, Appl. Catal. B, 176 (2015) 120–129.
  52. M. Keramati, B. Ayati, Petroleum wastewater treatment and optimization of effective parameters using electrocoagulation process, Modares Civil Eng. J., 18 (2019) 177–187.
  53. M. AhmadiMoghadam, H. Amiri, Investigation of TOC removal from industrial wastewaters using electrocoagulation process, Iran. J. Health Environ., 3 (2010) 185–194.
  54. A. Ghalwa, M. Nasser, N. Farhat, Removal of abamectin pesticide by electrocoagulation process using stainless steel and iron electrodes, J. Environ. Anal. Chem., 2 (2015) 134.
  55. G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38 (2004) 11–41.
  56. G.-D. Fang, D.D. Dionysiou, Y. Wang, S.R. Al-Abed, D.-M. Zhou, Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics, J. Hazard. Mater., 227 (2012) 394–401.
  57. R.S. Magazinovic, B.C. Nicholson, D.E. Mulcahy, D.E. Davey, Bromide levels in natural waters: its relationship to levels of both chloride and total dissolved solids and the implications for water treatment, Chemosphere, 57 (2004) 329–335.
  58. H. Shemer, K.G. Linden, Degradation and by-product formation of diazinon in water during UV and UV/H2O2 treatment, J. Hazard. Mater., 136 (2006) 553–559.
  59. Y.Q. Zhang, W.L. Huang, D.E. Fennell, In situ chemical oxidation of aniline by persulfate with iron(II) activation at ambient temperature, Chin. Chem. Lett., 21 (2010) 911–913.
  60. J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja, Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches, Desalination, 404 (2017) 1–21.
  61. V. Khandegar, A.K. Saroha, Electrocoagulation for the treatment of textile industry effluent–a review, J. Environ. Manage., 128 (2013) 949–963.
  62. J. de Oliveira Silva, G. Rodrigues Filho, C. da Silva Meireles, S.D. Ribeiro, J.G. Vieira, C.V. da Silva, D.A. Cerqueira, Thermal analysis and FTIR studies of sewage sludge produced in treatment plants. The case of sludge in the city of Uberlândia-MG, Brazil, Thermochim. Acta, 528 (2012) 72–75.
  63. H. Zhao, D. Zhang, P. Du, H. Li, C. Liu, Y. Li, H. Cao, J.C. Crittenden, Q. Huang, A combination of electro-enzymatic catalysis and electrocoagulation for the removal of endocrine disrupting chemicals from water, J. Hazard. Mater., 297 (2015) 269–277.
  64. P. Song, Z. Yang, H. Xu, J. Huang, X. Yang, L. Wang, Investigation of influencing factors and mechanism of antimony and arsenic removal by electrocoagulation using Fe–Al electrodes, Ind. Eng. Chem. Res., 53 (2014) 12911–12919.
  65. M. Nasrullah, L. Singh, S. Krishnan, M. Sakinah, A. Zularisam, Electrode design for electrochemical cell to treat palm oil mill effluent by electrocoagulation process, Environ. Technol. Innov., 9 (2018) 323–341.
  66. S. Irki, D. Ghernaout, M.W. Naceur, A. Alghamdi, M. Aichouni, Decolorizing methyl orange by Fe-electrocoagulation process—a mechanistic insight, Int. J. Environ. Chem., 2 (2018) 18.