References

  1. T. Hassan, S. Parveen, B.N. Bhat, U. Ahmad, Seasonal variations in water quality parameters of river Yamuna, India, Int. J. Curr. Microbiol. Appl. Sci., 6 (2017) 694–712, 2017.
  2. Y. Zhao, A. Sharma, B. Sivakumar, L. Marshall, P. Wang, J. Jiang, A Bayesian method for multi-pollution source water quality model and seasonal water quality management in river segments, Environ. Model. Softw., 57 (2014) 216–226.
  3. B.P.K.J.K. Jain, Wastewater Engineering (Including Air Pollution), Second, Laxmi Publications (P) LTD., India, 2014 , 1–655.
  4. S.I. Abba, G. Elkiran, Effluent prediction of chemical oxygen demand from the astewater treatment plant using artificial neural network application, Procedia Comput. Sci., 120 (2017) 156–163.
  5. T. Gómez, G. Gémar, M. Molinos-Senante, R. Sala-Garrido, R. Caballero, Assessing the efficiency of wastewater treatment plants: a double-bootstrap approach, J. Cleaner Prod., 164 (2017) 315–324.
  6. M.M. Ahmadi, H. Mahdavirad, B. Bakhtiari, Multi-criteria analysis of site selection for groundwater recharge with treated municipal wastewater, Water Sci. Technol., 76 (2017) 909–919.
  7. H. Bae, S. Kim, Y.J. Kim, Decision algorithm based on data mining for coagulant type and dosage in water treatment systems, 53 (2006) 321–329.
  8. ASCE, Application of artificial neural networks in hydrology 2000. Artificial neural networks in hydrology. 2: Hydrology applications, J. Hydrol. Eng., 5 (2000) 124–137.
  9. R.S. Govindaraju, Artificial neural networks in hydrology. II: hydrologic applications, J. Hydrol. Eng., 5 (2000) 124–137.
  10. R.A. Abdulkadir, S.I.A. Ali, S.I. Abba, P. Esmaili, Forecasting of daily rainfall at Ercan Airport Northern Cyprus : a comparison of linear and non-linear models Forecasting of daily rainfall at Ercan Airport Northern Cyprus : a comparison of linear and non-linear models, February, pp. 9–10, 2020, doi: 10.5004/ dwt.2020.25321.
  11. A.S. Mubarak, A. Süleyman, O. Mehmet, Development of CNN Model for Prediction of CRISPR/Cas12 Guide RNA Activity, International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions, Springer, Cham, 2019 August, pp. 697–703.
  12. M.S. Gaya, M.U. Zango, L.A. Yusuf, M. Mustapha, B. Muhammad, A. Sani, A. Tijjani, N.A Wahab, M.T.M. Khairi, Estimation of turbidity in water treatment plant using Hammerstein-Wiener and neural network technique, Indones. J. Electr. Eng. Comput. Sci., 5 (2017) 666–672.
  13. G. De Wu, S.L. Lo, Predicting real-time coagulant dosage in water treatment by artificial neural networks and adaptive network-based fuzzy inference system, Eng. Appl. Artif. Intell., 21 (2008)1189–1195.
  14. S. Al-Asheh, F.S. Mjalli, H.E. Alfadala, Forecasting Influent– Effluent Wastewater Treatment Plant Using Time Series Analysis and Artificial Neural Network Techniques, Chemical Product and Process Modeling, 2 (2007).
  15. J.-H. Kang, J. Song, S.S. Yoo, B.-J. Lee, H.W. Ji, Prediction of odor concentration emitted from wastewater treatment plant using an artificial neural network (ANN), Atmosphere (Basel), 11 (2020) 784.
  16. M. Yaqub, H. Asif, S. Kim, W. Lee, Modeling of a full-scale sewage treatment plant to predict the nutrient removal efficiency using a long short-term memory (LSTM) neural network, J. Water Process Eng., 37 (2020) 101388.
  17. M. Ansari, F. Othman, A. El-Shafie, Optimized fuzzy inference system to enhance prediction accuracy for influent characteristics of a sewage treatment plant, Sci. Total Environ., 722 (2020), doi: 10.1016/j.scitotenv.2020.137878.
  18. A.M. Anter, D. Gupta, O. Castillo, A novel parameter estimation in dynamic model via fuzzy swarm intelligence and chaos theory for faults in wastewater treatment plant, Soft Comput., 24 (2020) 111–129.
  19. N. Patel, J. Ruparelia, J. Barve, Prediction of total suspended solids present in effluent of primary clarifier of industrial common effluent treatment plant: mechanistic and fuzzy approach, J. Water Process Eng., 34 (2020) 101146, doi: 10.1016/j. jwpe.2020.101146.
  20. A. Sharafati, S.B.H.S. Asadollah, M. Hosseinzadeh, The potential of new ensemble machine learning models for effluent quality parameters prediction and related uncertainty, Process Saf. Environ. Prot., 140 (2020) 68–78.
  21. V. Nourani, H. Hakimzadeh, A.B. Amini, Implementation of artificial neural network technique in the simulation of dam breach hydrograph, J. Hydroinf., 14 (2012) 478.
  22. X. Zhang, F.W. Zwiers, G. Li, H. Wan, A.J. Cannon, Short- Duration Rainfall, 2017, doi: 10.1038/NGEO2911.
  23. F. Guo, G. Bretthauer, L.E. Phdqv, R.I. Vlpxodwlrq, Identification of Miso wiener and Hammerstein Systems, European Control Conference, 2003, pp. 2144–2149, doi: 10.23919/ECC. 2003.7085284.
  24. K. Yetilmezsoy, B. Ozkaya, M. Cakmakci, Artificial Intelligence- Based Prediction Models for Environmental Engineering, Neural Network World, 21 (2011) 193.
  25. V. Vapnik, The Nature of Statistical Learning Theory, p. 188, 1995, doi: 10.1007/978–1-4757–2440–0.
  26. X. Ji, X. Shang, R.A. Dahlgren, M. Zhang, Prediction of dissolved oxygen concentration in hypoxic river systems using support vector machine: a case study of Wen-Rui Tang River, China, Environ. Sci. Pollut. Res., 24 (2017) 16062–16076.
  27. V. Nourani, S. Mousavi, F. Sadikoglu, V.P. Singh, Experimental and AI-based numerical modeling of contaminant transport in porous media, J. Contam. Hydrol., 205 (2017) 78–95.
  28. Q.B. Pham, S. I. Abba, A.G. Usman, N.T.T. Linh, V. Gupta, A. Malik, R. Costache, N.D. Vo, D.Q. Tri, Potential of hybrid data-intelligence algorithms for multi-station modelling of rainfall, Water Resour. Manage., 33 (2019) 5067–5087.
  29. D.R. Legates, G.J. McCabe Jr., Evaluating the use of ‘Goodness of Fit’ measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 5 (1999) 233–241.
  30. M. Alas, S.I. Albrka Ali, Y. Abdulhadi, S.I. Abba, Experimental evaluation and modeling of polymer nanocomposite modified asphalt binder using ANN and ANFIS, 32 (2020) 1–11.
  31. S.I. Abba, Q. Bao Pham, G. Saini, N. Thi Thuy Linh, N. Ahmed, M. Mohajane, M. Khaledian, R. Aliyu Abdulkadir, Q.-V. Bach, Implementation of data intelligence models coupled with ensemble machine learning for prediction of water quality index, Environ. Sci. Pollut. Res., 2020, doi: 10.1007/s11356-020-09689-x.