References
- T. Hassan, S. Parveen, B.N. Bhat, U. Ahmad, Seasonal variations
in water quality parameters of river Yamuna, India, Int. J.
Curr. Microbiol. Appl. Sci., 6 (2017) 694–712, 2017.
- Y. Zhao, A. Sharma, B. Sivakumar, L. Marshall, P. Wang,
J. Jiang, A Bayesian method for multi-pollution source water
quality model and seasonal water quality management in
river segments, Environ. Model. Softw., 57 (2014) 216–226.
- B.P.K.J.K. Jain, Wastewater Engineering (Including Air Pollution),
Second, Laxmi Publications (P) LTD., India, 2014 , 1–655.
- S.I. Abba, G. Elkiran, Effluent prediction of chemical oxygen
demand from the astewater treatment plant using artificial
neural network application, Procedia Comput. Sci., 120 (2017)
156–163.
- T. Gómez, G. Gémar, M. Molinos-Senante, R. Sala-Garrido,
R. Caballero, Assessing the efficiency of wastewater treatment
plants: a double-bootstrap approach, J. Cleaner Prod., 164 (2017)
315–324.
- M.M. Ahmadi, H. Mahdavirad, B. Bakhtiari, Multi-criteria
analysis of site selection for groundwater recharge with treated
municipal wastewater, Water Sci. Technol., 76 (2017) 909–919.
- H. Bae, S. Kim, Y.J. Kim, Decision algorithm based on data
mining for coagulant type and dosage in water treatment
systems, 53 (2006) 321–329.
- ASCE, Application of artificial neural networks in hydrology
2000. Artificial neural networks in hydrology. 2: Hydrology
applications, J. Hydrol. Eng., 5 (2000) 124–137.
- R.S. Govindaraju, Artificial neural networks in hydrology. II:
hydrologic applications, J. Hydrol. Eng., 5 (2000) 124–137.
- R.A. Abdulkadir, S.I.A. Ali, S.I. Abba, P. Esmaili, Forecasting of
daily rainfall at Ercan Airport Northern Cyprus : a comparison
of linear and non-linear models Forecasting of daily rainfall
at Ercan Airport Northern Cyprus : a comparison of linear
and non-linear models, February, pp. 9–10, 2020, doi: 10.5004/
dwt.2020.25321.
- A.S. Mubarak, A. Süleyman, O. Mehmet, Development of CNN
Model for Prediction of CRISPR/Cas12 Guide RNA Activity,
International Conference on Theory and Application of Soft
Computing, Computing with Words and Perceptions, Springer,
Cham, 2019 August, pp. 697–703.
- M.S. Gaya, M.U. Zango, L.A. Yusuf, M. Mustapha,
B. Muhammad, A. Sani, A. Tijjani, N.A Wahab, M.T.M. Khairi,
Estimation of turbidity in water treatment plant using Hammerstein-Wiener and neural network technique,
Indones. J. Electr. Eng. Comput. Sci., 5 (2017) 666–672.
- G. De Wu, S.L. Lo, Predicting real-time coagulant dosage in
water treatment by artificial neural networks and adaptive
network-based fuzzy inference system, Eng. Appl. Artif. Intell.,
21 (2008)1189–1195.
- S. Al-Asheh, F.S. Mjalli, H.E. Alfadala, Forecasting Influent–
Effluent Wastewater Treatment Plant Using Time Series
Analysis and Artificial Neural Network Techniques, Chemical
Product and Process Modeling, 2 (2007).
- J.-H. Kang, J. Song, S.S. Yoo, B.-J. Lee, H.W. Ji, Prediction of
odor concentration emitted from wastewater treatment plant
using an artificial neural network (ANN), Atmosphere (Basel),
11 (2020) 784.
- M. Yaqub, H. Asif, S. Kim, W. Lee, Modeling of a full-scale
sewage treatment plant to predict the nutrient removal
efficiency using a long short-term memory (LSTM) neural
network, J. Water Process Eng., 37 (2020) 101388.
- M. Ansari, F. Othman, A. El-Shafie, Optimized fuzzy
inference system to enhance prediction accuracy for influent
characteristics of a sewage treatment plant, Sci. Total Environ.,
722 (2020), doi: 10.1016/j.scitotenv.2020.137878.
- A.M. Anter, D. Gupta, O. Castillo, A novel parameter estimation
in dynamic model via fuzzy swarm intelligence and chaos
theory for faults in wastewater treatment plant, Soft Comput.,
24 (2020) 111–129.
- N. Patel, J. Ruparelia, J. Barve, Prediction of total suspended
solids present in effluent of primary clarifier of industrial
common effluent treatment plant: mechanistic and fuzzy
approach, J. Water Process Eng., 34 (2020) 101146, doi: 10.1016/j.
jwpe.2020.101146.
- A. Sharafati, S.B.H.S. Asadollah, M. Hosseinzadeh,
The potential of new ensemble machine learning models for
effluent quality parameters prediction and related uncertainty,
Process Saf. Environ. Prot., 140 (2020) 68–78.
- V. Nourani, H. Hakimzadeh, A.B. Amini, Implementation of
artificial neural network technique in the simulation of dam
breach hydrograph, J. Hydroinf., 14 (2012) 478.
- X. Zhang, F.W. Zwiers, G. Li, H. Wan, A.J. Cannon, Short-
Duration Rainfall, 2017, doi: 10.1038/NGEO2911.
- F. Guo, G. Bretthauer, L.E. Phdqv, R.I. Vlpxodwlrq, Identification
of Miso wiener and Hammerstein Systems, European
Control Conference, 2003, pp. 2144–2149, doi: 10.23919/ECC.
2003.7085284.
- K. Yetilmezsoy, B. Ozkaya, M. Cakmakci, Artificial Intelligence-
Based Prediction Models for Environmental Engineering,
Neural Network World, 21 (2011) 193.
- V. Vapnik, The Nature of Statistical Learning Theory,
p. 188, 1995, doi: 10.1007/978–1-4757–2440–0.
- X. Ji, X. Shang, R.A. Dahlgren, M. Zhang, Prediction of
dissolved oxygen concentration in hypoxic river systems
using support vector machine: a case study of Wen-Rui Tang
River, China, Environ. Sci. Pollut. Res., 24 (2017) 16062–16076.
- V. Nourani, S. Mousavi, F. Sadikoglu, V.P. Singh, Experimental
and AI-based numerical modeling of contaminant transport
in porous media, J. Contam. Hydrol., 205 (2017) 78–95.
- Q.B. Pham, S. I. Abba, A.G. Usman, N.T.T. Linh, V. Gupta,
A. Malik, R. Costache, N.D. Vo, D.Q. Tri, Potential of hybrid
data-intelligence algorithms for multi-station modelling of
rainfall, Water Resour. Manage., 33 (2019) 5067–5087.
- D.R. Legates, G.J. McCabe Jr., Evaluating the use of ‘Goodness
of Fit’ measures in hydrologic and hydroclimatic model
validation, Water Resour. Res., 5 (1999) 233–241.
- M. Alas, S.I. Albrka Ali, Y. Abdulhadi, S.I. Abba, Experimental
evaluation and modeling of polymer nanocomposite modified
asphalt binder using ANN and ANFIS, 32 (2020) 1–11.
- S.I. Abba, Q. Bao Pham, G. Saini, N. Thi Thuy Linh, N. Ahmed,
M. Mohajane, M. Khaledian, R. Aliyu Abdulkadir, Q.-V. Bach,
Implementation of data intelligence models coupled with
ensemble machine learning for prediction of water quality index,
Environ. Sci. Pollut. Res., 2020, doi: 10.1007/s11356-020-09689-x.