References
- P. Kehrein, M. van Loosdrecht, P. Osseweijer, M. Garfí, J.
Dewulf, J. Posada, A critical review of resource recovery
from municipal wastewater treatment plants - market supply
potentials, technologies and bottlenecks, Environ. Sci. Water
Res. Technol., 6 (2020) 877–910.
- M.N. Murty, S. Kumar, Water Pollution in India: An Economic
Appraisal, University of British Columbia, 2011.
- S. Veenstra, G. Alaerts, M.R. Bijlsma, Chapter 3 – Technology
Selection, R. Helmer, I. Hespanhol, Eds., Water Pollution
Control – A Guide to the Use of Water Quality Management
Principles, World Health Organization (WHO)/United Nations
Environment Programme (UNEP), London (UK), 1997,
pp. 1–39.
- S. Rasalingam, R. Peng, R.T. Koodali, Removal of hazardous
pollutants from wastewaters: applications of TiO2-SiO2 mixed
oxide materials, J. Nanomater., 2014 (2014) 617405, https://doi.org/10.1155/2014/617405.
- G. Crini, E. Lichtfouse, Advantages and disadvantages of
techniques used for wastewater treatment, Environ. Chem.
Lett., 17 (2019) 145–155.
- A.J. Tóth, F. Gergely, P. Mizsey, Physicochemical treatment of
pharmaceutical process wastewater: distillation and membrane
processes, Period. Polytech., Chem. Eng., 55 (2011) 59–67.
- B.L. Pangarkar, M.G. Sane, M. Guddad, Reverse osmosis and
membrane distillation for desalination of groundwater: a
review, ISRN Mater. Sci., 2011 (2011) 523124, https://doi.org/10.5402/2011/523124.
- L. Malaeb, G.M. Ayoub, Reverse osmosis technology for water
treatment: state of the art review, Desalination, 267 (2011) 1–8.
- A. Abbas, On the performance limitation of reverse osmosis
water desalination systems, Int. J. Nucl. Desal., 2 (2007) 205–218.
- E. Drioli, G. Di Profio, E. Curcio, Hybrid membrane operations
in water desalination and industrial process rationalisation,
Water Sci. Technol., 51 (2005) 293–304.
- E.O. Ezugbe, S. Rathilal, Membrane technologies in wastewater
treatment: a review, Membranes (Basel), 10 (2020) 89, https://doi.org/10.3390/membranes10050089.
- A. Gabelman, S.-T. Hwang, Hollow fiber membrane contactors,
J. Membr. Sci., 159 (1999) 61–106.
- S.K. Gupta, N.S. Rathore, J.V. Sonawane, A.K. Pabby, R.R. Singh,
A.K. Venugopalan, P.K. Dey, B. Venkatramani, Hollow fiber
membrane contactor: novel extraction device for plutonium
extraction, BARC Newsletter, Founder’s Day Special Issue,
(2003) 181–189.
- E. Curcio, E. Drioli, Membrane distillation and related
operations—a review, Sep. Purif. Rev., 34 (2005) 35–86.
- K.K. Sirkar, Membranes, phase interfaces, and separations:
novel techniques and membranes–an overview, Ind. Eng.
Chem. Res., 47 (2008) 5250–5266.
- K.K. Sirkar, P.V. Shanbhag, A.S. Kovvali, Membrane in a reactor:
a functional perspective, Ind. Eng. Chem. Res., 38 (1999)
3715–3737.
- R.M. Ben Aim, M.J. Semmens, Membrane bioreactors for
wastewater treatment and reuse: a success story, Water Sci.
Technol., 47 (2003) 1–5.
- P. Arehjani, A. Kargari, Chapter 17 – Prospects of Nanocomposite
Membranes for Gas Separation by Membrane Contactors,
M. Sadrzadeh, T. Mohammadi, Eds., Nanocomposite
Membranes for Water and Gas Separation: Micro and Nano
Technologies, Elsevier Inc., Amsterdam, 2020, pp. 439–456.
- E. Kavitha, M. Dalmia, A.M. Samuel, S. Prabhakar, M.P. Rajesh,
Modeling and optimization of removal of strontium and cesium
from aqueous streams by size enhanced ultrafiltration using
chitosan derivative, Desal. Water Treat., 185 (2020) 262–276.
- E. Kavitha, R. Kedia, N. Babaria, S. Prabhakar, M.P. Rajesh,
Optimization of process using carboxymethyl chitosan for the
removal of mixed heavy metals from aqueous streams, Int.
J. Biol. Macromol., 149 (2020) 404–416.
- E. Kavitha, M.P. Rajesh, S. Prabhakar, Removal and recovery
of heavy metals from aqueous solution using β-cyclodextrin
polymer and optimization of complexation conditions, Desal.
Water Treat., 122 (2018) 219–230.
- E. Kavitha, A. Sowmya, S. Prabhakar, P. Jain, R. Surya,
M.P. Rajesh, Removal and recovery of heavy metals through
size enhanced ultrafiltration using chitosan derivatives and
optimization with response surface modeling, Int. J. Biol.
Macromol., 132 (2019) 278–288.
- T. Tow Teng, Y. Yusup, L. Wei Low, Heavy metal ion extraction
using organic solvents: an application of the equilibrium slope
method, A. Innocenti, Ed., Stoichiometry and Research - The
Importance of Quantity in Biomedicine, IntechOpen, 2012,
doi: 10.5772/33199.
- N. Othman, N.F.M. Noah, L.Y. Shu, Z.Y. Ooi, N. Jusoh,
M. Idroas, M. Goto, Easy removing of phenol from wastewater
using vegetable oil-based organic solvent in emulsion
liquid membrane process, Chin. J. Chem. Eng., 25 (2017) 45–52.
- A. Nanoti, S.K. Ganguly, A.N. Goswami, B.S. Rawat, Removal
of phenols from wastewater using liquid membranes in a
microporous hollow-fiber-membrane extractor, Ind. Eng.
Chem. Res., 36 (1997) 4369–4373.
- P.K. Parhi, K. Sarangi, Separation of copper, zinc, cobalt and
nickel ions by supported liquid membrane technique using LIX
84I, TOPS-99 and Cyanex 272, Sep. Purif. Technol., 59 (2008)
169–174.
- B. Hauser, M. Schellin, P. Popp, Membrane-assisted solvent
extraction of triazines, organochlorine, and organophosphorus
compounds in complex samples combined with large-volume
injection-gas chromatography/mass spectrometric detection,
Anal. Chem., 76 (2004) 6029–6038.
- E.A. Fouad, H.J. Bart, Separation of zinc by a non-dispersion
solvent extraction process in a hollow fiber contactor, Solvent
Extr. Ion Exch., 25 (2007) 857–877.
- M. Quilaqueo, G. Seriche, S. Valetto, L. Barros, S. Díaz-Quezada,
R. Ruby-Figueroa, E. Troncoso, H. Estay, An experimental
study of membrane contactor modules for recovering cyanide
through a gas membrane process, Membranes (Basel), 10 (2020)
10050105, https://doi.org/10.3390/membranes10050105.
- W. Cichy, J. Szymanowski, Recovery of phenol from aqueous
streams in hollow fiber modules, Environ. Sci. Technol.,
36 (2002) 2088–2093.
- Y.S. Ng, N.S. Jayakumar, M.A. Hashim, Behavior of
hydrophobic ionic liquids as liquid membranes on phenol
removal: experimental study and optimization, Desalination,
278 (2011) 250–258.
- M.B. Rosly, N. Othman, H.A. Rahman, Liquid membrane
component selection for removal of phenol from simulated
aqueous waste solution, Malaysian J. Anal. Sci., 22 (2018)
702–714.
- S.F. Shen, K.H. Smith, S. Cook, S.E. Kentish, J.M. Perera,
T. Bowser, G.W. Stevens, Phenol recovery with tributyl
phosphate in a hollow fiber membrane contactor: experimental
and model analysis, Sep. Purif. Technol., 69 (2009) 48–56.
- S. Shen, S.E. Kentish, G.W. Stevens, Shell-side mass-transfer
performance in hollow-fiber membrane contactors, Solvent
Extr. Ion Exch., 28 (2010) 817–844.
- M.J. González-Muñoz, S. Luque, J.R. Álvarez, J. Coca, Recovery
of phenol from aqueous solutions using hollow fibre contactors,
J. Membr. Sci., 213 (2003) 181–193.
- P.R. Kiezyk, D. Mackay, The screening and selection of solvents
for the extraction of phenol from water, Can. J. Chem. Eng.,
51 (1973) 741–745.
- Z. Lazarova, S. Boyadzhieva, Treatment of phenol-containing
aqueous solutions by membrane-based solvent extraction
in coupled ultrafiltration modules, Chem. Eng. J., 100 (2004)
129–138.
- S. Wang, D. Shi, R. Yang, Y. Xu, H. Guo, X. Yang, Solvent
extraction of phenol from aqueous solution with benzyl
2-ethylhexyl sulfoxide as a novel extractant, Can. J. Chem. Eng.,
93 (2015) 1787–1792.
- X. Yang, A. Zou, J. Qiu, S. Wang, H. Guo, Phenol removal from
aqueous system by bis(2-ethylhexyl) sulfoxide extraction,
Sep. Sci. Technol., 49 (2014) 2495–2501.
- M. Xiao, J. Zhou, Y. Tan, A. Zhang, Y. Xia, L. Ji, Treatment of
highly-concentrated phenol wastewater with an extractive
membrane reactor using silicone rubber, Desalination,
195 (2006) 281–293.