References

  1. P. Kehrein, M. van Loosdrecht, P. Osseweijer, M. Garfí, J. Dewulf, J. Posada, A critical review of resource recovery from municipal wastewater treatment plants - market supply potentials, technologies and bottlenecks, Environ. Sci. Water Res. Technol., 6 (2020) 877–910.
  2. M.N. Murty, S. Kumar, Water Pollution in India: An Economic Appraisal, University of British Columbia, 2011.
  3. S. Veenstra, G. Alaerts, M.R. Bijlsma, Chapter 3 – Technology Selection, R. Helmer, I. Hespanhol, Eds., Water Pollution Control – A Guide to the Use of Water Quality Management Principles, World Health Organization (WHO)/United Nations Environment Programme (UNEP), London (UK), 1997, pp. 1–39.
  4. S. Rasalingam, R. Peng, R.T. Koodali, Removal of hazardous pollutants from wastewaters: applications of TiO2-SiO2 mixed oxide materials, J. Nanomater., 2014 (2014) 617405, https://doi.org/10.1155/2014/617405.
  5. G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett., 17 (2019) 145–155.
  6. A.J. Tóth, F. Gergely, P. Mizsey, Physicochemical treatment of pharmaceutical process wastewater: distillation and membrane processes, Period. Polytech., Chem. Eng., 55 (2011) 59–67.
  7. B.L. Pangarkar, M.G. Sane, M. Guddad, Reverse osmosis and membrane distillation for desalination of groundwater: a review, ISRN Mater. Sci., 2011 (2011) 523124, https://doi.org/10.5402/2011/523124.
  8. L. Malaeb, G.M. Ayoub, Reverse osmosis technology for water treatment: state of the art review, Desalination, 267 (2011) 1–8.
  9. A. Abbas, On the performance limitation of reverse osmosis water desalination systems, Int. J. Nucl. Desal., 2 (2007) 205–218.
  10. E. Drioli, G. Di Profio, E. Curcio, Hybrid membrane operations in water desalination and industrial process rationalisation, Water Sci. Technol., 51 (2005) 293–304.
  11. E.O. Ezugbe, S. Rathilal, Membrane technologies in wastewater treatment: a review, Membranes (Basel), 10 (2020) 89, https://doi.org/10.3390/membranes10050089.
  12. A. Gabelman, S.-T. Hwang, Hollow fiber membrane contactors, J. Membr. Sci., 159 (1999) 61–106.
  13. S.K. Gupta, N.S. Rathore, J.V. Sonawane, A.K. Pabby, R.R. Singh, A.K. Venugopalan, P.K. Dey, B. Venkatramani, Hollow fiber membrane contactor: novel extraction device for plutonium extraction, BARC Newsletter, Founder’s Day Special Issue, (2003) 181–189.
  14. E. Curcio, E. Drioli, Membrane distillation and related operations—a review, Sep. Purif. Rev., 34 (2005) 35–86.
  15. K.K. Sirkar, Membranes, phase interfaces, and separations: novel techniques and membranes–an overview, Ind. Eng. Chem. Res., 47 (2008) 5250–5266.
  16. K.K. Sirkar, P.V. Shanbhag, A.S. Kovvali, Membrane in a reactor: a functional perspective, Ind. Eng. Chem. Res., 38 (1999) 3715–3737.
  17. R.M. Ben Aim, M.J. Semmens, Membrane bioreactors for wastewater treatment and reuse: a success story, Water Sci. Technol., 47 (2003) 1–5.
  18. P. Arehjani, A. Kargari, Chapter 17 – Prospects of Nanocomposite Membranes for Gas Separation by Membrane Contactors, M. Sadrzadeh, T. Mohammadi, Eds., Nanocomposite Membranes for Water and Gas Separation: Micro and Nano Technologies, Elsevier Inc., Amsterdam, 2020, pp. 439–456.
  19. E. Kavitha, M. Dalmia, A.M. Samuel, S. Prabhakar, M.P. Rajesh, Modeling and optimization of removal of strontium and cesium from aqueous streams by size enhanced ultrafiltration using chitosan derivative, Desal. Water Treat., 185 (2020) 262–276.
  20. E. Kavitha, R. Kedia, N. Babaria, S. Prabhakar, M.P. Rajesh, Optimization of process using carboxymethyl chitosan for the removal of mixed heavy metals from aqueous streams, Int. J. Biol. Macromol., 149 (2020) 404–416.
  21. E. Kavitha, M.P. Rajesh, S. Prabhakar, Removal and recovery of heavy metals from aqueous solution using β-cyclodextrin polymer and optimization of complexation conditions, Desal. Water Treat., 122 (2018) 219–230.
  22. E. Kavitha, A. Sowmya, S. Prabhakar, P. Jain, R. Surya, M.P. Rajesh, Removal and recovery of heavy metals through size enhanced ultrafiltration using chitosan derivatives and optimization with response surface modeling, Int. J. Biol. Macromol., 132 (2019) 278–288.
  23. T. Tow Teng, Y. Yusup, L. Wei Low, Heavy metal ion extraction using organic solvents: an application of the equilibrium slope method, A. Innocenti, Ed., Stoichiometry and Research - The Importance of Quantity in Biomedicine, IntechOpen, 2012, doi: 10.5772/33199.
  24. N. Othman, N.F.M. Noah, L.Y. Shu, Z.Y. Ooi, N. Jusoh, M. Idroas, M. Goto, Easy removing of phenol from wastewater using vegetable oil-based organic solvent in emulsion liquid membrane process, Chin. J. Chem. Eng., 25 (2017) 45–52.
  25. A. Nanoti, S.K. Ganguly, A.N. Goswami, B.S. Rawat, Removal of phenols from wastewater using liquid membranes in a microporous hollow-fiber-membrane extractor, Ind. Eng. Chem. Res., 36 (1997) 4369–4373.
  26. P.K. Parhi, K. Sarangi, Separation of copper, zinc, cobalt and nickel ions by supported liquid membrane technique using LIX 84I, TOPS-99 and Cyanex 272, Sep. Purif. Technol., 59 (2008) 169–174.
  27. B. Hauser, M. Schellin, P. Popp, Membrane-assisted solvent extraction of triazines, organochlorine, and organophosphorus compounds in complex samples combined with large-volume injection-gas chromatography/mass spectrometric detection, Anal. Chem., 76 (2004) 6029–6038.
  28. E.A. Fouad, H.J. Bart, Separation of zinc by a non-dispersion solvent extraction process in a hollow fiber contactor, Solvent Extr. Ion Exch., 25 (2007) 857–877.
  29. M. Quilaqueo, G. Seriche, S. Valetto, L. Barros, S. Díaz-Quezada, R. Ruby-Figueroa, E. Troncoso, H. Estay, An experimental study of membrane contactor modules for recovering cyanide through a gas membrane process, Membranes (Basel), 10 (2020) 10050105, https://doi.org/10.3390/membranes10050105.
  30. W. Cichy, J. Szymanowski, Recovery of phenol from aqueous streams in hollow fiber modules, Environ. Sci. Technol., 36 (2002) 2088–2093.
  31. Y.S. Ng, N.S. Jayakumar, M.A. Hashim, Behavior of hydrophobic ionic liquids as liquid membranes on phenol removal: experimental study and optimization, Desalination, 278 (2011) 250–258.
  32. M.B. Rosly, N. Othman, H.A. Rahman, Liquid membrane component selection for removal of phenol from simulated aqueous waste solution, Malaysian J. Anal. Sci., 22 (2018) 702–714.
  33. S.F. Shen, K.H. Smith, S. Cook, S.E. Kentish, J.M. Perera, T. Bowser, G.W. Stevens, Phenol recovery with tributyl phosphate in a hollow fiber membrane contactor: experimental and model analysis, Sep. Purif. Technol., 69 (2009) 48–56.
  34. S. Shen, S.E. Kentish, G.W. Stevens, Shell-side mass-transfer performance in hollow-fiber membrane contactors, Solvent Extr. Ion Exch., 28 (2010) 817–844.
  35. M.J. González-Muñoz, S. Luque, J.R. Álvarez, J. Coca, Recovery of phenol from aqueous solutions using hollow fibre contactors, J. Membr. Sci., 213 (2003) 181–193.
  36. P.R. Kiezyk, D. Mackay, The screening and selection of solvents for the extraction of phenol from water, Can. J. Chem. Eng., 51 (1973) 741–745.
  37. Z. Lazarova, S. Boyadzhieva, Treatment of phenol-containing aqueous solutions by membrane-based solvent extraction in coupled ultrafiltration modules, Chem. Eng. J., 100 (2004) 129–138.
  38. S. Wang, D. Shi, R. Yang, Y. Xu, H. Guo, X. Yang, Solvent extraction of phenol from aqueous solution with benzyl 2-ethylhexyl sulfoxide as a novel extractant, Can. J. Chem. Eng., 93 (2015) 1787–1792.
  39. X. Yang, A. Zou, J. Qiu, S. Wang, H. Guo, Phenol removal from aqueous system by bis(2-ethylhexyl) sulfoxide extraction, Sep. Sci. Technol., 49 (2014) 2495–2501.
  40. M. Xiao, J. Zhou, Y. Tan, A. Zhang, Y. Xia, L. Ji, Treatment of highly-concentrated phenol wastewater with an extractive membrane reactor using silicone rubber, Desalination, 195 (2006) 281–293.