References

  1. M. Kobya, E. Demirbas, O. Sahin, Effect of operational parameters on the removal of phenol from aqueous solutions by electrocoagulation using Fe and Al electrodes, Desal. Water Treat., 46 (2012) 366–374.
  2. E. Bazrafshan, H. Biglari, A.H. Mahvi, Phenol removal by electrocoagulation process from aqueous solutions, Fresenius Environ. Bull., 21 (2012) 364–371.
  3. U. Soni, J. Bajpai, S.K. Singh, A.K. Bajpai, Evaluation of chitosancarbon based biocomposite for efficient removal of phenols from aqueous solutions, J. Water Process. Eng., 16 (2017) 56–63.
  4. O. Sahu, D.G. Rao, N. Gabbiye, A. Engidayehu, F. Teshale, Sorption of phenol from synthetic aqueous solution by activated saw dust: optimizing parameters with response surface methodology, Biochem. Biophys. Rep., 12 (2017) 46–53.
  5. W.W. Anku, M.A. Mamo, P.P. Govender, Chapter 17, Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods, In: Phenolic Compounds-Natural Sources, Importance and Applications, In Tech., Open science, Open minds, 2017. Available at: http://dx.doi.org/10.5772/66927
  6. WHO, Guidelines for Drinking-Water Quality: Recommendations, World Health Organization, Geneva, 2004, pp. 540.
  7. E. Hernández-Francisco, J. Peral, L.M. Blanco-Jerez, Removal of phenolic compounds from oil refinery wastewater by electrocoagulation and Fenton/photo-Fenton processes, J. Water Process. Eng., 19 (2017) 96–100.
  8. R.R. Karri, N.S. Jayakumar, J.N. Sahu, Modelling of fluidisedbed reactor by differential evolution optimization for phenol removal using coconut shells based activated carbon, J. Mol. Liq., 231 (2017) 249–262.
  9. S.M. Nowee, M. Taherian, M. Salimi, S.M. Mousavi, Modeling and simulation of phenol removal from wastewater using a membrane contactor as a bioreactor, Appl. Math. Model., 42 (2017) 300–314.
  10. M. Caetano, C. Valderrama, A. Farran, J.L. Cortina, Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins, J. Colloid Interface Sci., 338 (2009) 402–409.
  11. S.A. Nor Aishah, J. Akhtar, H.K. Rai, Screening of combined zeolite-ozone system forphenol and COD removal, J. Chem. Eng., 158 (2010) 520–527.
  12. A. Ginos, T. Manios, D. Mantzavinos, Treatment of olive mill effluents by coagulation-flocculation-hydrogen peroxide oxidation and effect on phytotoxicity, J. Hazard. Mater., 133 (2006) 135–142.
  13. R. Sridar, U. Uma Ramanane, M. Rajasimman, ZnO nanoparticles – synthesis, characterization and its application for phenol removal from synthetic and pharmaceutical industry wastewater, Environ. Nanotechnol. Monit. Manage., 10 (2018) 388–393.
  14. B. Abussaud, H.A. Asmaly, T.A. Ihsanullah Saleh, V.K. Gupta, T. laoui, M.A. Atieh, Sorption of phenol from waters on activated carbon impregnated with iron oxide, aluminum oxide and titanium oxide, J. Mol. Liq., 213 (2016) 351–359.
  15. Z. Liu, H. Meng, H. Zhang, J. Cao, K. Zhou, J.M. Lian, Highly efficient degradation of phenol wastewater by microwave induced H2O2-CuOx/GAC catalytic oxidation process, Sep. Purif. Technol., 193 (2018) 49–57.
  16. I. Fatimah, E.Z. Pratiwi, W.P. Wicaksono, Synthesis of magnetic nanoparticles using Parkia speciosa Hassk pod extract and photocatalytic activity for Bromophenol blue degradation, EJAR, 46 (2020) 35–40.
  17. M.H.H. Ali, K.M. Al-Qahtani, S.M. El-Sayed, Enhancing photodegradation of 2,4,6 trichlorophenol and organic pollutants in industrial effluents using nanocomposite of TiO2 doped with reduced graphene oxide, EJAR, 45 (2019) 321–328.
  18. M. Saleem, A.A. Bukhari, M.N. Akram, Electroco-agulation for the treatment of wastewater for reuse in irrigation and plantation, J. Basic Appl. Sci., 7 (2011) 11–20.
  19. E. Butler, Y.-T. Hung, Y.-L. Yeh, M.S. Al Ahmad, Electrocoagulation in wastewater treatment, Water, 3 (2011) 495–525.
  20. G. Mouedhen, M. Feki, M.W. De Petris, H.F. Ayedi, Behavior of aluminum electrodes in electrocoagulation process, J. Hazard. Mater., 150 (2008) 124–135.
  21. M. Uğurlu, A. Gürses, Ç. Doğar, M. Yalçın, The removal of lignin and phenol from paper mill effluents by electrocoagulation, J. Environ. Manage., 87 (2008) 420–428.
  22. M.A. Zazouli, M. Taghavi, Phenol removal from aqueous solutions by electrocoagulation technology using iron electrodes: effect of some variables, J. Water Resour. Prot., 4 (2012) 980–983.
  23. A.S. Fajardo, R.F. Rodrigues, R.C. Martins, L.M. Castro, R.M. Quinta-Ferreira, Phenolic wastewaters treatment by electrocoagulation process using Zn anode, J. Chem. Eng., 275 (2015) 331–341.
  24. A.A. Moneer, M.M. El-Sadaawy, G.F. El-Said, F.A.M. Morsy, Modeling adsorption kinetic of crystal violet removal by electrocoagulation technique using bipolar ironelectrodes, Water Sci. Technol., 77 (2018) 323–336.
  25. O.T. Can, M. Bayramoglu, M. Kobya, Decolorization of reactive dye solutions by electrocoagulation using aluminum, Ind. Eng. Chem. Res., 42 (2003) 3391–3396.
  26. A.M. Shaker, A.A. Moneer, M.M. El-Sadaawy, N.M. El-Mallah, M.SH. Ramadan, Comparative study for removal of acid green 20 dye by electrocoagulation technique using aluminum and iron electrodes, Desal. Water Treat., 198 (2020) 345–363.
  27. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., APHA/AWWA/WEF, Washington, DC, 1998.
  28. O. Abdelwahab, N.K. Amin, E.-S.Z. El-Ashtoukhy, Electrochemical removal of phenol from oil refinery wastewater, J. Hazard. Mater., 163 (2009) 711–716.
  29. M.A. Zazouli, M. Taghavi, E. Bazrafshan, Influences of solution chemistry on phenol removal from aqueous environments by electrocoagulation process using aluminum electrodes, J. Health Scope, 1 (2012) 66–70.
  30. Z. Wu, M. Zhou, Partial degradation of phenol by advanced electrochemical oxidation process, Environ. Sci. Technol., 35 (2001) 2698–2703.
  31. X.-Y. Li, Y.-H. Cui, Y.-J. Feng, Z.-M. Xie, J.-D. Gu, Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes, Water Res., 39 (2005) 1972–1981.
  32. A.A. Mohammed, Electrocoagulation of phenol for wastewater treatment, Iraqi J. Chem. Petrol. Eng., 9 (2007) 37–41.
  33. M. Saravanan, N.P. Sambhamurthy, M. Sivarajan, Treatment of acid blue 113 dye solution using iron electrocoagulation, Clean Soil Air Water, 38 (2010) 565–571.
  34. M.M. Naim, A.A. Moneer, G.F. El-Said, Predictive equations for the defluoridation by electrocoagulation technique using bipolar aluminum electrodes in the absence and presence of additives: a multivariate study, Desal. Water Treat., 57 (2016) 6320–6332.
  35. N. Modirshahla, M.A. Behnajady, S. Mohammadi-Aghdam, Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation, J. Hazard. Mater., 154 (2008) 778–786.
  36. N. Modirshahla, M.A. Behnajady, S. Kooshaiian, Investigation of the effect of different electrodes connections on the removal efficiency of Tartrazine from aqueous solutions by electrocoagulation, Dyes Pigm., 74 (2007) 249–257.
  37. R. Kamaraj, P. Ganesan, J. Lakshmi, S. Vasudevan, Removal of copper from water by electrocoagulation process-effect of alternating current (AC) and direct current (DC), Environ. Sci. Pollut. Res., 20 (2013) 399–412.
  38. G. Piotrowska, B. Pierozynski, Electrodegradation of phenol through continuous electrolysis of synthetic wastewater on platinized titanium and stainless-steel anodes, Int. J. Electrochem. Sci., 12 (2017) 4444–4455.
  39. B. Pierozynski, G. Piotrowska, Electrochemical degradation of phenol and resorcinol molecules through the dissolution of sacrificial anodes of macro-corrosion galvanic Cells, Water, 10 (2018) 770. doi: 10.3390/w10060770.
  40. S. Vasudevan, An efficient removal of phenol from water by peroxi- ectrocoagulation processes, J. Water Process. Eng., 2 (2014) 53–57.
  41. M.H. Umberit, A. Jędrasiewicz, Application of infrared spectrophotometry to the identification of inorganic substances in dosage forms of antacida group, Acta Poloniac Pharmaceutica – Drug Res., 57 (2000) 83–91.
  42. Y.J.O. Asencios, M.R. Sun-Kou, Synthesis of high-surface-area γ-Al2O3 from aluminum scrap and its use for the adsorption of metals: Pb(II), Cd(II) and Zn(II), Appl. Surf. Sci., 258 (2012) 10002–10011.
  43. M. Pimentel, N. Oturan, M. Dezotti, M.A. Oturan, Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode, Appl. Catal. B, 83 (2008) 140–149.
  44. S. Vasudevan, J. Lakshmi, G. Sozhan, Optimization of electrocoagulation process for the simultaneous removal of mercury, lead, and nickel from contaminated water, Environ. Sci. Pollut. Res., 19 (2012) 2734–2744.
  45. F. Liu, K. Zhou, Q. Chen, A. Wang, W. Chen, Application of magnetic ferrite nanoparticles for removal of Cu(II) from copper-ammonia wastewater, J. Alloys Compd., 773 (2019) 140–149.
  46. A.H. Shobier, M.M. El-Sadaawy, G.F. El-Said, Removal of hexavalent chromium by ecofriendly raw marine green alga Ulva fasciata: kinetic, thermodynamic and isotherm studies, EJAR, in press (2020) https://doi.org/10.1016/j.ejar.2020.09.003.
  47. R. Kamaraj, S. Vasudevan, Facile one-pot synthesis of nano-zinc hydroxide by electro-dissolution of zinc as a sacrificial anode and the application for adsorption of Th4+, U4+, and Ce4+ from aqueous solution, Res. Chem. Intermed., 42 (2016) 4077–4095.
  48. A. Gouthaman, R.S. Azarudeen, A. Gnanaprakasam, V.M. Sivakumar, M. Thirumarimurugan, Polymeric nanocomposites for the removal of Acid red 52 dye from aqueous solutions: synthesis, characterization, kinetic and isotherm studies, Ecotoxicol. Environ. Saf., 160 (2018) 42–51.
  49. S. Vasudevan, J. Lakshmi, G. Sozhan, Electrocoagulation studies on the removal of copper from water using mild steel electrode, Water Environ. Res., 84 (2012) 209–219.
  50. R. Kamaraj, A. Pandiarajan, S. Jayakiruba, Mu. Naushad, S. Vasudevan, Kinetics, thermodynamics and isotherm modeling for removal of nitrate from liquids by facile one-pot electrosynthesized nano zinc hydroxide, J. Mol. Liq., 215 (2016) 204–211.
  51. G.F. El-Said, M.M. El-Sadaawy, M.A. Aly-Eldeen, Adsorption isotherms and kinetic studies for the defluoridation from aqueous solution using eco-friendly raw marine green algae, Ulva lactuca, Environ. Monit. Assess., 190 (2018) 14.
  52. A. Pholosi, E.B. Naidoo, A.E. Ofomaja, Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: a comparative kinetic and diffusion study, S. Afr. J. Chem. Eng., 32 (2020) 39–55.
  53. D. Núñez-Gómeza, C. Rodriguesa, F.R. Lapollia, M.Á. Lobo-Recio, Adsorption of heavy metals from coal acid mine drainage by shrimp shell waste: isotherm and continuous-flow studies, J. Environ. Chem. Eng., 7 (2019) 102787.
  54. K. Rambabu, G. Bharatha, F. Banat, P.L. Show, Biosorption performance of date palm empty fruit bunch wastes for toxic hexavalent chromium removal, Environ. Res., 187 (2020) 109694.
  55. M.I. Jalees, M.U. Farooq, S. Basheer, S. Asghar, Removal of heavy metals from drinking water using chikni mitti (kaolinite): isotherm and kinetics, Arab. J. Sci. Eng., 44 (2019) 6351–6359.
  56. W.J. Weber Jr, J.C. Morriss, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
  57. B.N. Patil, D.B. Nalk, S. Shrivastava, Photocatalytic degradation of hazardous ponceau-S dye from industrial wastewater, Desalination, 269 (2011) 276–283.
  58. F.I. El-Hosiny, M.A. Abdel-Khalek, K.A. Selim, I. Osama, Physicochemical study of dye removal using electrocoagulation flotation process, Physicochem. Probl. Mineral Process., 54 (2018) 321–333.
  59. M. Kobya, E. Gengec, E. Demirbas, Operating parameters and costs assessments of a real dyehouse wastewater effluent treated by a continuous electrocoagulation process, Chem. Eng. Process., 101 (2016) 87–100.