References

  1. World Bank, Fish to 2030 Prospects for Fisheries and Aquaculture, World Bank Report No. 83177, Washington DC, USA, 2013.
  2. M.C.J. Verdegem, Nutrient discharge from aquaculture operations in function of system design and production environment, Rev. Aquacult., 5 (2013) 158–171.
  3. FAO, The State of World Fisheries and Aquaculture 2018 – Meeting the Sustainable Development Goals, The Food and Agriculture Organization of the United Nations, Rome, Italy, 2018.
  4. F.C. Cabello, H.P. Godfrey, A. Tomova, L. Ivanova, H. Dölz, A. Millanao, A.H. Buschmann, Antimicrobial use in aquaculture re‐examined: its relevance to antimicrobial resistance and to animal and human health, Environ. Microbiol., 15 (2013) 1917–1942.
  5. W.Y. Mo, Z. Chen, H.M. Leung, A.O.W. Leung, Application of veterinary antibiotics in China’s aquaculture industry and their potential human health risks, Environ. Sci. Pollut. Res., 24 (2017) 8978–8989.
  6. Y. Thomas, C. Courties, Y. El Helwe, A. Herbland, H. Lemonnier, Spatial and temporal extension of eutrophication associated with shrimp farm wastewater discharges in the New Caledonia lagoon, Mar. Pollut. Bull., 61(2010) 387–398.
  7. S.S. De Silva, B.A. Ingram, P.T. Nguyen, T.M. Bui, G.J. Gooley, G.M. Turchini, Estimation of nitrogen and phosphorus in effluent from the stripped catfish farming sector in the Mekong Delta, Vietnam, Ambio, 39 (2010) 504–514.
  8. M.C. Danner, A. Robertson, V. Behrends, J. Reiss, Antibiotic pollution in surface fresh waters: occurrence and effects, Sci. Total Environ., 664 (2019) 793–804.
  9. L. Wollenberger, B. Halling-Sørensen, K.O. Kusk, Acute and chronic toxicity of veterinary antibiotics to Daphnia magna, Chemosphere, 40 (2000) 723–730.
  10. I. Varó, J.C. Navarro, G. Rigos, J. Del Ramo, J.A. Calduch-Giner, A. Hernàndez, J. Pertusa, A. Torreblanca, Proteomic evaluation of potentiated sulfa treatment on gilthead sea bream (Sparus aurata L.) liver, Aquaculture, 376–379 (2013) 36–44.
  11. Z. Yu, D. Yin, H. Deng, The combinational effects between sulfonamides and metals on nematode Caenorhabditis elegans, Ecotoxicol. Environ. Saf., 111 (2015) 66–71.
  12. A. Tello, B. Austin, T.C. Telfer, Selective pressure of antibiotic pollution on bacteria of important to public health, Environ. Health Perspect., 120 (2012) 1100–1106.
  13. Q. Liu, M. Li, X. Liu, Q. Zhang, R. Liu, Z. Wang, X. Shi, J. Quan, X. Shen, F. Zhang, Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism, Front. Environ. Sci. Eng., 12 (2018) 6.
  14. R. Crab, Y. Avnimelech, T. Defoirdt, P. Bossier, W. Vestraete, Nitrogen removal techniques in aquaculture for a sustainable production, Aquaculture, 270 (2007) 1–14.
  15. M. Bôto, C.M.R. Almeida, A.P Mucha, Potential of constructed wetlands for removal of antibiotics from saline aquaculture effluents, Water, 8 (2016) 465.
  16. Y. Lin, S. Jing, D. Lee, Y. Chang, H. Sui, Constructed wetlands for water pollution management of aquaculture farms conducting earthen pond culture, Water Environ. Res., 82 (2010) 759–768.
  17. M. Pei, B. Zhang, Y. He, J. Su, K. Gin, O. Lev, G. Shen, S. Hu, State of the art of tertiary treatment technologies for controlling antibiotic resistance in wastewater treatment plants, Environ. Int., 131 (2019) 105026.
  18. H.H. Ngo, W. Guo, X. Xing, Evaluation of a novel sponge submerged membrane bioreactor (SSMBR) for sustainable water reclamation, Bioresour. Technol., 99 (2008) 2429–2435.
  19. S. Yang, F. Yang, Z. Fu, R. Lei, Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal, Bioresour. Technol., 100 (2009) 2369–2374.
  20. S. Prasertkulsak, C. Chiemchaisri, W. Chiemchaisri, T. Itonaga, K. Yamamoto, Removals of pharmaceutical compounds from hospital wastewater in membrane bioreactor operated under short hydraulic retention time, Chemosphere, 150 (2016) 624–631.
  21. F. Polesel, H.R. Andersen, S. Trapp, B.G. Plósz, Removal of antibiotics in biological wastewater treatment systems-a critocal assessment using the activated sludge modeling framework for zenobiotics (ASM-X), Environ. Sci. Technol., 50 (2016) 10316–10334.
  22. S. Xia, R. Jia, F. Feng, K. Xie, H. Li, D. Jing, X. Xu, Effect of solids retention time on antibiotics removal performance and microbial communities in an A/O-MBR process, Bioresour. Technol., 106 (2012) 36–43.
  23. R. Hatoum, O. Potier, T. Roques-Carmes, C. Lemaitre, T. Hamieh, J. Toufaily, H. Horn, E. Borowska, Elimination of micropollutants in activated sludge reactors with a special focus on the effect of biomass concentration, Water, 11 (2019) 2217.
  24. APHA, Standard Methods for the Examination of Water and Wastewater, 22nd ed., American Public Health Association, Washington DC, 2012.
  25. T.T. Nguyen, H.H. Ngo, W. Guo, A. Johnston, A. Listowski, Effects of sponge size and type on the performance of an up-flow sponge bioreactor in primary treated sewage effluent treatment, Bioresour. Technol., 101 (2010) 1416–1420.
  26. EPA 2007, Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment and Biosolids by HPLC/ MS/MS, Environmental Protection Agency, Washington DC, USA, doi: 10.1002/etc.3451.
  27. K. Kimura, H. Hara, Y. Watanabe, Elimination of selected acidic pharmaceuticals from municipal wastewater by an activated sludge system and membrane bioreactors, Environ. Sci. Technol., 41 (2007) 3708–3714.
  28. C. Chiemchaisri, K. Yamamoto, Enhancement of oxygen transfer and nitrogen removal in a membrane separation bioreactor for domestic wastewater treatment, Water Sci. Technol., 51 (2005) 85–92.
  29. S.B. He, G. Xue, B.Z. Wang, Factors affecting simultaneous nitrification and de-nitrification (SND) and its kinetics model in membrane bioreactor, J. Hazard. Mater., 168 (2009) 704–710.
  30. I. Michael, L. Rizzo, C.S. McArdell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot, D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review, Water Res., 47 (2013) 957–995.
  31. L. Kovalova, H. Siegrist, H. Singer, A. Wittmer, C.S. McArdell, Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination, Environ. Sci. Technol., 46 (2012) 1536–1545.
  32. M.A. Baghapour, M.R. Shirdarreh, M. Faramarzian, Amoxicillin removal from aqueous solutions using submerged biological aerated filter, Desal. Water Treat., 54 (2015) 790–801.
  33. A. Kruglova, A. Mikola, A. Gonzalez-Martinez, R. Vahala, Effect of sulfadiazine and trimethoprim on activated sludge performance and microbial community dynamics in laboratoryscale membrane bioreactors and sequencing batch reactors at 8°C, Biotechnol. Prog., 35 (2019) e2708.
  34. S.F. Cheng, Y.C. Lee, C.Y. Kuo, T.N. Wu, A case study of antibiotic wastewater treatment by using a membrane biological reactor system, Int. Biodeterior. Biodegrad., 102 (2015) 398–401.
  35. R. Daghrir, P. Drogui, Tetracycline antibiotics in the environment: a review, Environ. Chem. Lett., 11 (2013) 209–227.
  36. Y. Deng, Y. Mao, B. Li, C. Yang, T. Zhang, Aerobic degradation of sulfadiazine by Arthrobacter spp.: kinetics, pathways, and genomic characterization, Environ. Sci. Technol., 50 (2016) 9566–9575.
  37. S.I. Mulla, Q. Sun, A. Hu, Y. Wang, M. Ashfaq, S.A.M.A.S. Eqani, C. Yu, Evaluation of sulfadiazine degradation in three newly isolated pure bacterial cultures, PLoS One, 11 (2016) e0165013.
  38. R. Xu, Z. Wu, Z. Zhou, F. Meng, Removal of sulfadiazine and tetracycline in membrane bioreactors: linking pathway to microbial community shift, Environ. Technol., 40 (2019) 134–143.
  39. Z. Li, Q. Chang, S. Li, M. Gao, Z. She, L. Guo, Y. Zhao, C. Jin, D. Zheng, Q. Xu, Impact of sulfadiazine on performance and microbial community of a sequencing batch biofilm reactor treating synthetic mariculture wastewater, Bioresour. Technol., 235 (2017) 122–130.
  40. E. Zuccato, S. Castiglioni, R. Bagnati, M. Melis, R. Fanelli, Source, occurrence, and fate of antibiotics in the Italian aquatic environment, J. Hazard. Mater., 179 (2010) 1042–1048.
  41. S.F. Yang, C.F. Lin, C.J. Wu, K.K. Ng, A.Y. Lin, P.K. Hong, Fate of sulfonamide antibiotics in contact with activated sludgesorption and biodegradation, Water Res., 46 (2012) 1301–1308.
  42. A. Göbel, C.S. McArdell, A. Joss, H. Siegrist, W. Giger, Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies, Sci. Total Environ., 372 (2007) 361–371.
  43. S. Pérez, P. Eichhorn, D.S. Aga, Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment, Environ. Toxicol. Chem., 24 (2005) 1361–1367.
  44. A.L. Batt, S. Kim, D.S. Aga, Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge, Environ. Sci. Technol., 40 (2006) 7367–7373.