References
- L. Li, P. Jiang, H. Xu, G. Lin, D. Guo, H. Wu, Water quality
prediction based on recurrent neural network and improved
evidence theory: a case study of Qiantang River, Environ. Sci.
Pollut. Res., 26 (2019) 879–896.
- M. Homami, S.A. Mirbagheri, S.M. Borghei, M. Abbaspour,
Simulation modeling of nutrients, dissolved oxygen and
total dissolved solids in Peer-Bazar River and Anzali wetland
eutrophication prediction, Desal. Water Treat., 79 (2017) 108–124.
- O.T. Baki, E. Aras, U.O. Akdemir, B. Yilmaz, Biochemical
oxygen demand prediction in wastewater treatment plant by
using different regression analysis models, Desal. Water Treat.,
157 (2019) 79–89.
- S.Y. Liu, H.J. Tai, Q.S. Ding, D.L. Li, L.Q. Xu, Y.G. Wei, A hybrid
approach of support vector regression with genetic algorithm
optimization for aquaculture water quality prediction, Math.
Comput. Modell., 58 (2013) 458–465.
- J.J. Carbajal-Hernandez, L.P. Sanchez-Fernandez, L.A. Villa-
Vargas, J.A. Carrasco-Ochoa, J.F. Martínez-Trinidad, Water
quality assessment in shrimp culture using an analytical
hierarchical process. Ecol. Indic., 29 (2013) 148–158.
- S.A. Dellana, D. West, Predictive modeling for wastewater
applications: linear and nonlinear approaches, Environ. Modell.
Softw., 24 (2009) 96–106.
- E.V. Hatzikos, G. Tsoumakas, G. Tzanis, An empirical study on
sea water quality prediction, Knowledge-Based Syst., 21 (2008)
471–478.
- H. Amdevyren, N. Demyr, A. Kanik, Use of principal component
scores in multiple linear regression models for prediction of
Chlorophyll-a in reservoirs, Ecol. Modell., 181 (2005) 581–589.
- X. Ta, Y. Wei, Research on a dissolved oxygen prediction method
for recirculating aquaculture systems based on a convolution
neural network, Comput. Electron. Agric., 145 (2018) 302–310.
- S. Palani, S.Y. Liong, P. Tkalich, An ANN application for water
quality forecasting, Mar. Pollut. Bull., 56 (2008) 1586–1597.
- J.H. Cho, S.K. Seok, H.S. Ryong, A river water quality
management model for optimizing regional waster treatment
using a genetic algorithm, J. Environ. Manage., 73 (2004) 229–242.
- H.G. Han, Q.L. Chen, J.F. Qiao, An efficient self-organizing RBF
neural network for water quality prediction, Neural Networks,
24 (2001) 717–725.
- Y.R. Ding, Y.J. Cai, P.D. Sun, B. Chen, The use of combined
neural networks and genetic algorithms for prediction of river
water quality, J. Appl. Res. Technol., 12 (2004) 493–499.
- M. Mahmoodabadi, R.R. Arshad, Long-term evaluation of
water quality parameters of the Karoun River using a regression
approach and the adaptive neuro-fuzzy inference system, Mar.
Pollut. Bull., 126 (2018) 372–380.
- H.M. Lee, C.M. Chen, T.C. Huang, Learning efficiency
improvement of back-propagation algorithm by error saturation
prevention method, Neurocomputing, 41 (2001) 125–143.
- H.C. Neiad, M. Farshad, F.N. Rahatabad, O. Khayat, Gradientbased
back- propagation dynamical iterative learning scheme
for the neuro-fuzzy inference system, Expert Syst., 33 (2016)
70–76.
- B. Scholkopf, A.J. Smola, R. Williamson, P. Bartlett, New support
vector algorithms, Neural Comput., 12 (2000) 1207–1245.
- T. Hansen, C.J. Wang, Support vector based battery state of
charge estimator, J. Power Sources, 141 (2005) 351–358.
- X. Li, D. Lord, Y. Zhang, Y. Xie, Predicting motor vehicle crashes
using Support Vector Machine models, Accid. Anal. Prev.,
40 (2008) 1611–1618.
- F. Nagata, K. Tokuno, K. Mitarai, Defect detection method using
deep convolutional neural network, support vector machine
and template matching techniques, Artif. Life Rob., 24 (2019)
512–519.
- V.H. Quej, J. Almorox, J.A. Arnaldo, L. Saito, ANFIS, SVM and
ANN soft-computing techniques to estimate daily global solar
radiation in a warm sub-humid environment, J. Atmos. Sol.
Terr. Phys., 155 (2017) 62–70.
- P.J. Garcia Nieto, J. Martinez Torres, M. Araujo Fernandez,
C. Ordonez Galan, Support vector machines and neural
networks used to evaluate paper manufactured using Eucalyptus
globulus, Appl. Math. Modell., 36 (2012) 6137–6145.
- A. Suarez Sanchez, P.J. Garcia Nieto, P. Riesgo Fernandez,
F.J. Iglesias Rodriguez, Application of an SVM-based regression
model to the air quality study at local scale in the Aviles urban
area (Spain), Math. Comput. Modell., 54 (2011) 1453–1466.
- P.J. Garcia Nieto, E.F. Combarro, J.J. del Coz Diaz, E. Montanes,
A SVM-based regression model to study the air quality at local
scale in Oviedo urban area (Northern Spain): a case study,
Appl. Math. Comput., 219 (2013) 8923–8937.
- P.J. García Nieto, E. Garcia Gonzalo, J.R. Alonso Fernandez,
C. Diaz Muniz, Hybrid PSO–SVM-based method for longterm
forecasting of turbidity in the Nalon river basin: a case
study in Northern Spain, Ecol. Eng., 73 (2014) 192–200.
- Y.G. Oh, M. Busogi, K. Ransikarbum, D. Shin, D. Kwon,
N. Kim, Real-time quality monitoring and control system using
an integrated cost effective support vector machine, J. Mech.
Sci Technol., 33 (2019) 6008–6020.
- S. Kulkarni, G. Harman, An Elementary Introduction to
Statistical Learning Theory, Wiley, New York, NY, 2011.
- S. Mirjalili, S.N. Mirjalili, A. Lewis, Grey wolf optimizer, Adv.
Eng. Softw., 69 (2014) 46–61.
- B. Xiao Qiang, Z. Lu, D. Zhi Min, C. Jing, Z. Jian Ye, Prediction
of sulfur solubility in supercritical sour gases using grey wolf
optimizer-based support vector machine, J. Mol. Liq., 261 (2018)
431–438.
- L.Z. Cui, G.H. Li, Z.X. Zhu, Z.K. Wen, N. Lu, J. Lu, A novel
differential evolution algorithm with a self-adaptation
parameter control method by differential evolution, Soft
Comput., 22 (2018) 6171–6190.
- J.S. Chou, C.P. Yu, D.N. Truong, B. Susilo, A.Y. Hu, Q. Sun,
Predicting microbial species in a river based on physicochemical
properties by bio-inspired metaheuristic optimized machine
learning, Sustainability, 11 (2019), doi: 10.3390/su11246889.
- S.H. Wang, Y. Li, Y. Shao, C. Cattani, Y.D. Zhang, S.D. Du,
Detection of dendritic spines using wavelet packet entropy
and fuzzy support vector machine, CNS Neurol. Disord. Drug
Targets, 16 (2017) 116–121.
- H.W. Liu, K. Guo, Z.Y. Zhang, D.D. Yu, J.X. Zhang, F.P. Ning,
High-power LED photoelectrothermal analysis based on
backpropagation artificial neural networks, IEEE Trans.
Electron Devices, 64 (2017) 2867–2873.
- W.Z. Lu, W.J. Wang, Potential assessment of the “support vector
machine” method in forecasting ambient air pollutant trends,
Chemosphere, 59 (2005) 693–701.
- X.P. Liao, G. Zhou, Z.K. Zhang, J. Lu, J.Y. Ma, Tool wear state
recognition based on GWO-SVM with feature selection of
genetic algorithm, Int. J. Adv. Manuf. Technol., 104 (2019)
1051–1063.
- N.M. Hatta, A.M. Zain, R. Sallehuddin, Z. Shayfull, Y. Yusoff,
Recent studies on optimisation method of Grey Wolf Optimiser
(GWO): a review (2014–2017), Artif. Intell. Rev., 52 (2019)
2651–2683.
- A. Korashy, S. Kamel, F. Jurado, A.R. Youssef, Hybrid whale
optimization algorithm and grey wolf optimizer algorithm for
optimal coordination of direction overcurrent relays, Electr.
Power Compon. Syst., 47 (2019) 644–658.