References

  1. J. Hakanen, K. Miettinen, K. Sahlstedt, Wastewater treatment: new insight provided by interactive multiobjective optimization, Decis. Support Syst., 51 (2010) 328–337.
  2. H. Han, L. Zhang, Y. Hou, J. Qiao, Nonlinear model predictive control based on a self-organizing recurrent neural network, IEEE Trans. Neur. Networks Learn., 27 (2016) 402–415.
  3. A. Saptoro, State of the art in the development of adaptive soft sensors based on just-in-time models, Procedia Chem., 9 (2014) 226–234.
  4. B. Szelag, K. Barbusinski, J. Studzinski, L. Bartkiewicz, Prediction of wastewater quality indicators at the inflow to the wastewater treatment plant using data mining methods, E3S Web Conf., (2017) 1–8.
  5. P. Yongeun, L. Mayzonee, M.K. Young, Development of enhanced groundwater arsenic prediction model using machine learning approaches in Southeast Asian countries, Desal. Water Treat., 57 (2016) 12227–12236.
  6. K. Ding, J. Zhang, X. Zhu, The model of pump head data mining based on SVM, Appl. Mech. Mater., 2685 (2013) 3263–3268.
  7. A. Sharafati, S. Asadollah, M. Hosseinzadeh, The potential of new ensemble machine learning models for effluent quality parameters prediction and related uncertainty, Process Saf. Environ., 140 (2020) 68–78.
  8. V. Sousa, J. Matos, N. Matias, I. Meireles, Statistical comparison of the performance of data-based models for sewer condition modeling, Struct. Infrastruct. Eng., 15 (2019) 1680–1693.
  9. S. Włodzimierz, K. Wojciech, Determination of the optimal operational parameters for a three-phase fluidised bed bioreactor with a light biomass support when used in treatment of phenolic wastewaters, Biochem. Eng. J., 20 (2014) 49–56.
  10. C. Song, H. Wang, P. Li, A Receding Optimization Control Policy for Production Systems with Quadratic Inventory Costs, IFAC Proceedings Volumes, 2004, pp. 713–717.
  11. W. Ang, W.M Abdul, H. Nidal, P.L Choe, A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants, Desalination, 363 (2015) 2–18.
  12. S. Meng, Y.R. Shen, E. Wang, Basic science of water: challenges and current status towards a molecular picture, Nano Res., 8 (2015) 3085–3110.
  13. E.S. Rigobello, A.D. Dantas, L.D. Bernardo, Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration, Chemosphere, 92 (2013) 184–191.
  14. M. Vliet, J. Yearsley, W. Franssen, F. Ludwig, Coupled daily streamflow and water temperature modelling in large river basins, Hydrol. Earth Syst. Sci., 16 (2012) 4303–4321.
  15. L. Zhang, C. Chen, J. Bu, D. Cai, X. He, Active Learning based on locally linear reconstruction, IEEE Trans. Pattern Anal., 33 (2011) 2026–2038.
  16. C. Chen, L. Zhang, J. Bu, Constrained Laplacian Eigenmap for dimensionality reduction, Neurocomputing, 73 (2010) 951–958.
  17. T.K. Ho, Random Decision Forest, Proceedings of the 3rd International Conference on Document Analysis and Recognition, 1995, pp. 278–282.
  18. X. Wang, L. Wang, N. Li, An application of decision tree based on ID3, Phys. Procedia, 25 (2012) 1017–1021
  19. V.N. Vapnik, An overview of statistical learning theory, IEEE Trans. Neural Network, 10 (1999) 988–999.
  20. G. Hong, J. Kwan, J. Lim, J. Jo, Prediction of effluent concentration in a wastewater treatment plant using machine learning models, J. Environ. Sci., 32 (2015) 90–101.
  21. H. Yoon, S.C. Jun, Y. Hyun, A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer, J. Hydrol., 396 (2011) 128–138.
  22. Q.J. Wang, Using genetic algorithms to optimise model parameters, Environ. Model. Softw., 12 (1997) 27–34.