References

  1. S.K. Al-Dawery, Adsorption of methanol from methanol–water mixture by activated carbon and its regeneration using photo-oxidation process, Des. Water Treat., 57 (2016) 3065–3073.
  2. B. Ledesma, S. Román, A. Álvarez-Murillo, E. Sabio, J.F. González, Cyclic adsorption/thermal regeneration of activated carbons, J. Anal. Appl. Pyrolysis, 106 (2014) 112–117.
  3. C.L. Mangun, K.R. Benak, M.A. Daley, J. Economy, Oxidation of activated carbon fibers: effect on pore size, surface chemistry, and adsorption properties, Chem. Mater., 11 (1999) 3476–3483.
  4. S. Guilane, O. Hamdaoui, Ultrasound-assisted regeneration of granular activated carbon saturated by 4-chlorophenol in batchloop reactor, Des. Water Treat., 57 (2016) 17262–17270.
  5. R.V. Mcquillan, G.W. Stevens, K.A. Mumford, The electrochemical regeneration of granular activated carbons: a review, J. Hazard. Mater., 355 (2018) 34–49.
  6. R. Cherbański, Regeneration of granular activated carbon loaded with toluene – comparison of microwave and conductive heating at the same active powers, Chem. Eng. Process., 123 (2018) 148–157.
  7. M. El Gamal, H.A. Mousa, M.H. El-Naas, R. Zacharia, S.J. Judd, Bio-regeneration of activated carbon: a comprehensive review, Sep. Purif. Technol., 197 (2018) 345–359.
  8. R.S. Horng, I.-C. Tseng, Regeneration of granular activated carbon saturated with acetone and isopropyl alcohol via a recirculation process under H2O2/UV oxidation, J. Hazard. Mater., 154 (2008) 366–372.
  9. K. Guan, Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films, Surf. Coat. Technol., 191 (2005) 155–160.
  10. J. Chen, J. Shu, A. Zhang, J.Y. Heng, Z.Y. Yan, J.Q. Chen, Synthesis of carbon quantum dots/TiO2 nanocomposite for photo-degradation of Rhodamine B and cefradine, Diamond Relat. Mater., 70 (2016) 137–144.
  11. K.F. Zhou, Y.H. Zhu, X.L. Yang, X. Jiang, C.Z. Li, Preparation of graphene–TiO2 composites with enhanced photocatalytic activity, New J. Chem., 35 (2011) 353–359.
  12. S.A.K. Leghari, S. Sajjad, F. Chen, J.L. Zhang, WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst, Chem. Eng. J., 166 (2011) 906–915.
  13. B.A. van Driel, P.J. Kooyman, K.J. van den Berg, A. Schmidt-Ott, J. Dik, A quick assessment of the photocatalytic activity of TiO2 pigments — from lab to conservation studio!, Microchem. J., 126 (2016) 162–171.
  14. S.X. Liu, C. Sun, S.R. Zhang, Photocatalytic regeneration of exhausted activated carbon saturated with phenol, Bull. Environ. Contam. Toxicol., 73 (2004) 1017–1024.
  15. J. Chen, Y.F. Qin, Z.H. Chen, Z. Yang, W.B. Yang, Y.P. Wang, Gas circulating fluidized beds photocatalytic regeneration of I-TiO2 modified activated carbons saturated with toluene, Chem. Eng. J., 293 (2016) 281–290.
  16. M.B. Tahir, A.M. Asiri, G. Nab, M. Rafique, M. Sagir, Fabrication of heterogeneous photocatalysts for insight role of carbon nanofibre in hierarchical WO3/MoSe2 composite for enhanced photocatalytic hydrogen generation, Ceram. Int., 45 (2019) 5547–5552.
  17. M.B. Tahir, G. Nabi, N.R. Khalid, Enhanced photocatalytic performance of visible-light active graphene-WO3 nanostructures for hydrogen production, Mater. Sci. Semicond. Process., 84 (2018) 36–41.
  18. M.B. Tahir, Microbial photoelectrochemical cell for improved hydrogen evolution using nickel ferrite incorporated WO3 under visible light irradiation, Int. J. Hydrogen Energy, 44 (2019) 17316–17322.
  19. S.Y. Lim, W. Shen, Z.Q. Gao, Carbon quantum dots and their applications, Chem. Soc. Rev., 44 (2015) 362–381.
  20. J. Tian, Y.H. Leng, Z.H. Zhao, Y. Xia, Y.H. Sang, P. Hao, J. Zhan, M.C. Li, H. Liu, Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation, Nano Energy, 11 (2015) 419–427.
  21. Q. Chang, K.K. Li, S.L. Hu, Y.G. Dong, J.L. Yang, Hydroxyapatite supported N-doped carbon quantum dots for visible-light photocatalysis, Mater. Lett., 175 (2016) 44–47.
  22. P.S. Saud, B. Pant, A.-M. Alam, Z.K. Ghouri, M. Park, H.-Y. Kim, Carbon quantum dots anchored TiO2 nanofibers: effective photocatalyst for waste water treatment, Ceram. Int., 41 (2015) 11953–11959.
  23. A.A. Narvekar, J.B. Fernandes, S.G. Tilve, Adsorption behavior of methylene blue on glycerol based carbon materials, J. Environ. Chem. Eng., 6 (2018) 1714–1725.
  24. J.T. Adeleke, T. Theivasanthi, M. Thiruppathi, M. Swaminathan, T. Akomolafe, A.B. Alabi, Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles, Appl. Surf. Sci., 455 (2018) 195–200.
  25. A.S. Ibupoto, U.A. Qureshi, F. Ahmed, Z. Khatri, M. Khatri, M. Maqsood, R.Z. Brohi, I.S. Kim, Reusable carbon nanofibers for efficient removal of methylene blue from aqueous solution, Chem. Eng. Res. Des., 136 (2018) 744–752.
  26. D. Pathania, S. Sharma, P. Singh, Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast, Arabian J. Chem., 10 (2017) S1445–S1451.
  27. J.L. Yang, L. Chen, Q.Q. Jiang, X.T. Yue, Optimized preparation of nitrogen-doped carbon dots by response surface methodology and application in Cd2+ detection, Fullerenes Nanotubes Carbon Nanostruct., 27 (2019) 233–239.
  28. Y.-Q. Zhang, D.-K. Ma, Y.-G. Zhang, W. Chen, S.-M. Huang, N-doped carbon quantum dots for TiO2-based photocatalysts and dye-sensitized solar cells, Nano Energy, 2 (2013) 545–552.
  29. N.C.T. Martins, J. Ângelo, A.V. Girao, T. Trindade, L. Andrade, A. Mendes, N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity, Appl. Catal., B, 193 (2016) 67–74.
  30. B. Zhang, H. Maimaiti, D.-D. Zhang, B. Xu, M. Wei, Preparation of coal-based C-dots/TiO2 and its visible-light photocatalytic characteristics for degradation of pulping black liquor, J. Photochem. Photobiol., A, 345 (2017) 54–62.
  31. T.S. Natarajan, H.C. Bajaj, R.J. Tayade, Palmyra tuber peel derived activated carbon and anatase TiO2 nanotube based nanocomposites with enhanced photocatalytic performance in rhodamine 6G dye degradation, Process Saf. Environ. Prot., 104 (2016) 346–357.
  32. S. Natarajan, H.C. Bajaj, R.J. Tayade, Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process, J. Environ. Sci., 30 (2018) 201–222.
  33. Z.H. Hu, T. Xu, B.W. Fang, Photocatalytic degradation of vehicle exhaust using Fe-doped TiO2 loaded on activated carbon, Appl. Surf. Sci., 420 (2017) 34–42.
  34. Q.M. Li, Y.S. Qi, C.Z. Gao. Chemical regeneration of spent powdered activated carbon used in decolorization of sodium salicylate for the pharmaceutical industry, J. Cleaner Prod., 86 (2015) 424–431.
  35. C.-A. Chiu, K. Hristovski, S.G. Huling, P. Westerhoff, In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst, Water Res., 47 (2013) 1596–1603.
  36. R.M. Narbaitz, J. McEwen, Electrochemical regeneration of field spent GAC from two water treatment plants, Water Res., 46 (2012) 4852–4860.
  37. S.T. Liu, Y.J. Wang, B. Wang, J. Huang, S.B. Deng, G. Yu, Regeneration of Rhodamine B saturated activated carbon by an electro-peroxone process, J. Cleaner Prod., 168 (2017) 584–594.