References

  1. M.V. Subbaiah, V. Yarramuthi, D.-S. Kim, Methyl orange removal from aqueous solution using goethite, chitosan beads and goethite impregnated with chitosan beads, J. Mol. Liq., 240 (2017) 329–339.
  2. R.R. Singh, P. Singh, V. Kandari, R. Singh, R. Dobhal, S. Gupta, A review on characterization and bioremediation of pharmaceutical industries’ wastewater: an Indian perspective, Appl. Water Sci., 7 (2017) 1–12.
  3. S. Murtaza, A. Arooj, N.S. Shah, J.A. Khan, L.A. Shah, F. Rehman, H. Arandiyan, A.M. Khan, A.R. Khan, Narrowing the band gap of TiO2 by co-doping with Mn2+ and Co2+ for efficient photocatalytic degradation of enoxacin and its additional peroxidase like activity: a mechanistic approach, J. Mol. Liq., 272 (2018) 403–412.
  4. H.M. Feng, D. Shaw, A trading-ratio system for trading water pollution discharge permits, J. Environ. Econ. Manage., 49 (2005) 83–102.
  5. S.B. Levy, The Antibiotic Paradox: How Miracle Drugs are Destroying the Miracle, Springer, US, 2013.
  6. I.M. Aminul, I. Ali, S.M. Abdul Karim, M.S.H. Firoz, A.-N. Chowdhury, D.W. Morton, M.J. Angove, Removal of dye from polluted water using novel nano manganese oxide-based materials, J. Water Process Eng., 32 (2019) 100911, doi: 10.1016/j. jwpe.2019.100911.
  7. S. Murtaza, L.A. Shah, J.A. Khan, N.S. Shah, J. Nisar, H.M. Khan, P. Zhang, A.R. Khan, Efficient photocatalytic degradation of norfloxacin in aqueous media by hydrothermally synthesized immobilized TiO2/Ti films with exposed {001} facets, J. Phys. Chem. A, 120 (2016) 9916–9931.
  8. S. Murtaza, Efficient removal of phenol from aqueous solution by the pulsed high-voltage discharge process in the presence of H2O2, Chem. Int., 1 (2015) 81–86.
  9. A. Dion, M. Ateia, M. Fujii, M.S. Johnson, C. Yoshimura, Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: a critical review of recent literature, Water Res., 142 (2018) 26–45.
  10. F.B. Li, X.Z. Li, M.F. Hou, Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+–TiO2 suspension for odor control, Appl. Catal., B, 48 (2004) 185–194.
  11. A. Fayaz, J.A. Khan, N.S. Shah, S. Murtaza, H.M. Khan, Carbamazepine degradation by UV and UV-assisted AOPs: kinetics, mechanism and toxicity investigations, Process Saf. Environ. Prot., 117 (2018) 307–314.
  12. K.-K. Anna, A. Krzywicka, The comparison of efficiency of Fenton and photo-Fenton treatment of stabilised landfill leachate, Environ. Prot. Nat. Resour., 26 (2015) 49–53.
  13. J.A. Khan, M. Sayed, S. Khan, N.S. Shah, D.D. Dionysiou, G. Boczkaj, Chapter 9 – Advanced Oxidation Processes for the Treatment of Contaminants of Emerging Concern, A.J. Hernández-Maldonado, L. Blaney, Eds., Contaminants of Emerging Concern in Water and Wastewater: Advanced Treatment Processes, Elsevier, Butterworth-Heinemann, Waltham, Massachusetts (USA), 2020, pp. 299–365.
  14. S. Khan, X. He, H.M. Khan, D. Boccelli, D.D. Dionysiou, Efficient degradation of lindane in aqueous solution by iron(II) and/or UV activated peroxymonosulfate, J. Photochem. Photobiol., A, 316 (2016) 37–43.
  15. O.S. Keen, N.G. Love, K.G. Linden, The role of effluent nitrate in trace organic chemical oxidation during UV disinfection, Water Res., 46 (2012) 5224–5234.
  16. S.C. Wilson, J.C. Kevin, Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review, Environ. Pollut., 81 (1993) 229–249.
  17. M.A. Rauf, M.A. Meetani, S. Hisaindee, An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals, Desalination, 276 (2011) 13–27.
  18. B.M. Dowd, D. Press, M.L. Huertos, Agricultural nonpoint source water pollution policy: the case of California’s Central Coast, Agric. Ecosyst. Environ., 128 (2008) 151–161.
  19. S. Khan, C. Han, M. Sayed, M. Sohail, S. Jan, S. Sultana, H.M. Khan, D.D. Dionysiou, Exhaustive photocatalytic lindane degradation by combined simulated solar light-activated nanocrystalline TiO2 and inorganic oxidants, Catalysts, 9 (2019) 425, doi: 10.3390/catal9050425.
  20. R.F. Dantas, O. Rossiter, A.K.R. Teixeira, A.S. Simões, V.L. da Silva, Direct UV photolysis of propranolol and metronidazole in aqueous solution, Chem. Eng. J., 158 (2010) 143–147.
  21. S.K. Mondal, A.K. Saha, A. Sinha, Removal of ciprofloxacin using modified advanced oxidation processes: kinetics, pathways and process optimization, J. Cleaner Prod., 171 (2018) 1203–1214.
  22. B. Xie, X. Li, X. Huang, Z. Xu, W. Zhang, B. Pan, Enhanced debromination of 4-bromophenol by the UV/sulfite process: efficiency and mechanism, J. Environ. Sci., 54 (2017) 231–238.
  23. S. Khan, X. He, J.A. Khan, H.M. Khan, D.L. Boccelli, D.D. Dionysiou, Kinetics and mechanism of sulfate radical- and hydroxyl radical-induced degradation of highly chlorinated pesticide lindane in UV/peroxymonosulfate system, Chem. Eng. J., 318 (2017) 135–142.
  24. D.-M. Gu, C.-S. Guo, Q.-Y. Feng, H. Zhang, J. Xu, Degradation of ketamine and methamphetamine by the UV/H2O2 system: kinetics, mechanisms and comparison, Water, 12 (2020) 2999, doi: 10.3390/w12112999.
  25. M.S. Lucas, J.A. Peres, Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation, Dyes Pigm., 71 (2006) 236–244.
  26. J.A. Khan, X. He, H.M. Khan, N.S. Shah, D.D. Dionysiou, Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, UV/S2O82–/Fe2+ and UV/HSO5/Fe2+ processes: a comparative study, Chem. Eng. J., 218 (2013) 376–383.
  27. L. Clarizia, D. Russo, I. Di Somma, R. Marotta, R. Andreozzi, Homogeneous photo-Fenton processes at near neutral pH: a review, Appl. Catal., B, 209 (2017) 358–371.
  28. A. Matilainen, M. Vepsäläinen, M. Sillanpää, Natural organic matter removal by coagulation during drinking water treatment: a review, Adv. Colloid Interface Sci., 159 (2010) 189–197.
  29. R. Li, Y. Gao, X. Jin, Z. Chen, M. Megharaj, R. Naidu, Fentonlike oxidation of 2,4-DCP in aqueous solution using iron-based nanoparticles as the heterogeneous catalyst, J. Colloid Interface Sci., 438 (2015) 87–93.
  30. G. Dimeski, T. Badrick, A. St. John, Ion selective electrodes (ISEs) and interferences—a review, Clin. Chim. Acta, 411 (2010) 309–317.
  31. M.Y. Ghaly, G. Härtel, R. Mayer, R. Haseneder, Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study, Waste Manage., 21 (2001) 41–47.
  32. T. Lv, L. Pan, X. Liu, Z. Sun, Enhanced photocatalytic degradation of methylene blue by ZnO–reduced graphene oxide–carbon nanotube composites synthesized via microwaveassisted reaction, Catal. Sci. Technol., 2 (2012) 2297–2301.
  33. X. Cheng, G. Pan, X. Yu, Construction of high-efficient photoelectrocatalytic system by coupling with TiO2 nanotubes photoanode and active carbon/polytetrafluoroethylene cathode and its enhanced photoelectrocatalytic degradation of 2,4-dichlorophene and mechanism, Chem. Eng. J., 279 (2015) 264–272.
  34. P. Mazellier, É. Leroy, J. De Laat, B. Legube, Transformation of carbendazim induced by the H2O2/UV system in the presence of hydrogenocarbonate ions: involvement of the carbonate radical, New J. Chem., 26 (2002) 1784–1790.
  35. J. Khan, M. Sayed, F. Ali, H.M. Khan, Removal of acid yellow 17 dye by fenton oxidation process, Zeitschrift für Physikalische Chemie, 232 (2018) 507–525.
  36. B.O. Keller, J. Sui, A.B. Young, R.M. Whittal, Interferences and contaminants encountered in modern mass spectrometry, Anal. Chim. Acta, 627 (2008) 71–81.
  37. S. Khan, M. Sohail, C. Han, J.A. Khan, H.M. Khan, D.D. Dionysiou, Degradation of highly chlorinated pesticide, lindane, in water using UV/persulfate: kinetics and mechanism, toxicity evaluation, and synergism by H2O2, J. Hazard. Mater., 402 (2020) 123558, doi: 10.1016/j.jhazmat.2020.123558.
  38. C. Tan, N. Gao, Y. Deng, Y. Zhang, M. Sui, J. Deng, S. Zhou, Degradation of antipyrine by UV, UV/H2O2 and UV/PS, J. Hazard. Mater., 260 (2013) 1008–1016.
  39. F. Yuan, C. Hu, X. Hu, J. Qu, M. Yang, Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H2O2, Water Res., 43 (2009) 1766–1774.