References

  1. B. Li, J. Ma, L. Zhou, Y. Qiu, Magnetic microsphere to remove tetracycline from water: adsorption, H2O2 oxidation and regeneration, Chem. Eng. J., 330 (2017) 191–201.
  2. M. Malakootian, S.N. Asadzadeh, Oxidative removal of tetracycline by sono Fenton-like oxidation process in aqueous media, Desal. Water Treat., 193 (2020) 302–401.
  3. M. Malakootian, S.N. Asadzadeh, Removal of tetracycline from aqueous solution by ultrasound and ultraviolet enhanced persulfate oxidation, Desal. Water Treat., 197 (2020) 191–199.
  4. R. Daghrir, P. Drogui, Tetracycline antibiotics in the environment: a review, Environ. Chem. Lett., 11 (2013) 209–227.
  5. E.S. Elmolla, M. Chaudhuri, Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process, J. Hazard. Mater., 173 (2010) 445–449.
  6. V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices–a review, J. Environ. Manage., 92 (2011) 2304–2347.
  7. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, Adsorptive removal of antibiotics from water and wastewater: progress and challenges, Sci. Total Environ., 532 (2015) 112–126.
  8. I.R. Bautitz, R.F.P. Nogueira, Degradation of tetracycline by photo-Fenton process—solar irradiation and matrix effects, J. Photochem. Photobiol., A, 187 (2007) 33–39.
  9. J.J. López-Peñalver, M. Sánchez-Polo, C.V. Gómez-Pacheco, J. Rivera-Utrilla, Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes, J. Chem. Technol. Biotechnol., 85 (2010) 1325–1333.
  10. H.M. Lwin, W. Zhan, S. Song, F. Jia, J. Zhou, Visible light photocatalytic degradation pathway of tetracycline hydrochloride with cubic structured ZnO/SnO2 heterojunction nanocatalyst, Chem. Phys. Lett., 736 (2019) 136806, https://doi.org/10.1016/j.cplett.2019.136806.
  11. C.F. Couto, L.C. Lange, M.C.S. Amaral, A critical review on membrane separation processes applied to remove pharmaceutically active compounds from water and wastewater, J. Water Process Eng., 26 (2018) 156–175.
  12. Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci., 368 (2012) 540–546.
  13. P.-H. Chang, Z. Li, T.-L. Yu, S. Munkhbayer, T.-H. Kuo, Y.-C. Hung, J.-S. Jean, K.-H. Lin, Sorptive removal of tetracycline from water by palygorskite, J. Hazard. Mater., 165 (2009) 148–155.
  14. D.I. Massé, N.M.C. Saady, Y. Gilbert, Potential of biological processes to eliminate antibiotics in livestock manure: an overview, Animals, 4 (2014) 146–163.
  15. A.K. Biń, S. Sobera-Madej, Comparison of the advanced oxidation processes (UV, UV/H2O2 and O3) for the removal of antibiotic substances during wastewater treatment, Ozone Sci. Eng., 34 (2012) 136–139.
  16. R.D.C. Soltani, M. Mashayekhi, M. Naderi, G. Boczkaj, S. Jorfi, M. Safari, Sonocatalytic degradation of tetracycline antibiotic using zinc oxide nanostructures loaded on nano-cellulose from waste straw as nanosonocatalyst, Ultrason. Sonochem., 55 (2019) 117–124.
  17. P. Liu, H. Zhang, Y. Feng, F. Yang, J. Zhang, Removal of trace antibiotics from wastewater: a systematic study of nanofiltration combined with ozone-based advanced oxidation processes, Chem. Eng. J., 240 (2014) 211–220.
  18. M. Ahmadi, H.R. Motlagh, N. Jaafarzadeh, A. Mostoufi, R. Saeedi, G. Barzegar, S. Jorfi, Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite, J. Environ. Manage., 186 (2017) 55–63.
  19. M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int., 35 (2009) 402–417.
  20. E.A. Serna-Galvis, J. Silva-Agredo, A.L. Giraldo-Aguirre, O.A. Flórez-Acosta, R.A. Torres-Palma, High frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimicrobial activity from water, Ultrason. Sonochem., 31 (2016) 276–283.
  21. J. Jeong, W. Song, W.J. Cooper, J. Jung, J. Greaves, Degradation of tetracycline antibiotics: mechanisms and kinetic studies for advanced oxidation/reduction processes, Chemosphere, 78 (2010) 533–540.
  22. Y. Zhang, Y. Zhuang, J. Geng, H. Ren, K. Xu, L. Ding, Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes, Sci. Total Environ., 550 (2016) 184–191.
  23. G. Lofrano, R. Pedrazzani, G. Libralato, M. Carotenuto, Advanced oxidation processes for antibiotics removal: a review, Curr. Org. Chem., 21 (2017) 1054–1067.
  24. J. Cao, L. Lai, B. Lai, G. Yao, X. Chen, L. Song, Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: performance, intermediates, toxicity and mechanism, Chem. Eng. J., 364 (2019) 45–56.
  25. Q. Yang, X. Yang, Y. Yan, C. Sun, H. Wu, J. He, D. Wang, Heterogeneous activation of peroxymonosulfate by different ferromanganese oxides for tetracycline degradation: Structure dependence and catalytic mechanism, Chem. Eng. J., 348 (2018) 263–270.
  26. Y. Liu, Y. Wang, Q. Wang, J. Pan, J. Zhang, Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/ heat/peroxymonosulfate (PMS), Chemosphere, 190 (2018) 431–441.
  27. J. Sharma, I.M. Mishra, D.D. Dionysiou, V. Kumar, Oxidative removal of Bisphenol A by UV-C/peroxymonosulfate (PMS): kinetics, influence of co-existing chemicals and degradation pathway, Chem. Eng. J., 276 (2015) 193–204.
  28. B.-T. Zhang, W. Xiang, X. Jiang, Y. Zhang, Y. Teng, Oxidation of dyes by alkaline-activated peroxymonosulfate, J. Environ. Eng., 142 (2016) 4016003.
  29. R. Yin, W. Guo, H. Wang, J. Du, X. Zhou, Q. Wu, H. Zheng, J. Chang, N. Ren, Enhanced peroxymonosulfate activation for sulfamethazine degradation by ultrasound irradiation: performances and mechanisms, Chem. Eng. J., 335 (2018) 145–153.
  30. T. Zhang, H. Zhu, J.-P. Croue, Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism, Environ. Sci. Technol., 47 (2013) 2784–2791.
  31. J. Du, J. Bao, Y. Liu, H. Ling, H. Zheng, S.H. Kim, D.D. Dionysiou, Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A, J. Hazard. Mater., 320 (2016) 150–159.
  32. F. Ghanbari, M. Moradi, Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants, Chem. Eng. J., 310 (2017) 41–62.
  33. F. Tamaddon, A. Nasiri, G. Yazdanpanah, Photocatalytic degradation of ciprofloxacin using CuFe2O4@methyl cellulose based magnetic nanobiocomposite, MethodsX, 7 (2020) 100764, doi: 10.1016/j.mex.2019.12.005.
  34. M. Malakootian, M. Khatami, H. Mahdizadeh, A. Nasiri, M. Amiri Gharaghani, A study on the photocatalytic degradation of p-Nitroaniline on glass plates by thermo-immobilized ZnO nanoparticle, Inorg. Nano-Metal Chem., 50 (2020) 124–135.
  35. A. Nasiri, F. Tamaddon, M.H. Mosslemin, M. Faraji, A microwave assisted method to synthesize nanoCoFe2O4@methyl cellulose as a novel metal-organic framework for antibiotic degradation, MethodsX, 6 (2019) 1557–1563.
  36. M. Malakootian, A. Nasiri, A. Asadipour, M. Faraji, E. Kargar, A facile and green method for synthesis of ZnFe2O4@CMC as a new magnetic nanophotocatalyst for ciprofloxacin removal from aqueous media, MethodsX, 6 (2019) 1575–1580.
  37. F. Tamaddon, M.H. Mosslemin, A. Asadipour, M.A. Gharaghani, A. Nasiri, Microwave-assisted preparation of ZnFe2O4@methyl cellulose as a new nano-biomagnetic photocatalyst for photodegradation of metronidazole, Int. J. Biol. Macromol., 154 (2020) 1036–1049.
  38. M. Malakootian, A. Nasiri, A.N. Alibeigi, H. Mahdizadeh, M.A. Gharaghani, Synthesis and stabilization of ZnO nanoparticles on a glass plate to study the removal efficiency of acid red 18 by hybrid advanced oxidation process (Ultraviolet/ZnO/ultrasonic), Des. Water Treat., 170 (2019) 325–336.
  39. M. Malakootian, A. Smith Jr., M.A. Gharaghani, H. Mahdizadeh, A. Nasiri, G. Yazdanpanah, Decoloration of textile Acid Red 18 dye by hybrid UV/COP advanced oxidation process using ZnO as a catalyst immobilized on a stone surface, Des. Water Treat., 182 (2020) 385–394.
  40. H. Mahdizadeh, A. Nasiri, M.A. Gharaghani, G. Yazdanpanah, Hybrid UV/COP advanced oxidation process using ZnO as a catalyst immobilized on a stone surface for degradation of acid red 18 dye, MethodsX, 7 (2020) 101118, https://doi.org/10.1016/j. mex.2020.101118.
  41. S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Sol. Energy Mater. Sol. Cells, 77 (2003) 65–82.
  42. S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater., 112 (2004) 269–278.
  43. S. Chen, Y. Liu, Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst, Chemosphere, 67 (2007) 1010–1017.
  44. A. Samad, M. Furukawa, H. Katsumata, T. Suzuki, S. Kaneco, Photocatalytic oxidation and simultaneous removal of arsenite with CuO/ZnO photocatalyst, J. Photochem. Photobiol., A, 325 (2016) 97–103.
  45. Y. Wu, M. Xing, J. Zhang, F. Chen, Effective visible light-active boron and carbon modified TiO2 photocatalyst for degradation of organic pollutant, Appl. Catal., B, 97 (2010) 182–189.
  46. N. Chandel, K. Sharma, A. Sudhaik, P. Raizada, A. Hosseini-Bandegharaei, V.K. Thakur, P. Singh, Magnetically separable ZnO/ZnFe2O4 and ZnO/CoFe2O4 photocatalysts supported onto nitrogen doped graphene for photocatalytic degradation of toxic dyes, Arabian J. Chem., 13 (2020) 4324–4340.
  47. L. Fernández, M. Gamallo, M.A. González-Gómez, C. Vázquez-Vázquez, J. Rivas, M. Pintado, M.T. Moreira, Insight into antibiotics removal: exploring the photocatalytic performance of a Fe3O4/ZnO nanocomposite in a novel magnetic sequential batch reactor, J. Environ. Manage., 237 (2019) 595–608.
  48. M. Malakootian, H. Mahdizadeh, A. Dehdarirad, M. Amiri Gharghani, Photocatalytic ozonation degradation of ciprofloxacin using ZnO nanoparticles immobilized on the surface of stones, J. Dispersion Sci. Technol., 40 (2019) 846–854.
  49. M.K. Debanath, S. Karmakar, Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method, Mater. Lett., 111 (2013) 116–119.
  50. S. Narendhran, R. Sivaraj, Biogenic ZnO nanoparticles synthesized using L. aculeata leaf extract and their antifungal activity against plant fungal pathogens, Bull. Mater. Sci., 39 (2016) 1–5.
  51. S. Ahmed, S.A. Chaudhry, S. Ikram, A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry, J. Photochem. Photobiol., B, 166 (2017) 272–284.
  52. H. Wang, H. Yao, J. Pei, F. Liu, D. Li, Photodegradation of tetracycline antibiotics in aqueous solution by UV/ZnO, Des. Water Treat., 57 (2016) 19981–19987.
  53. V.H.T. Thi, B.-K. Lee, Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method, J. Hazard. Mater., 324 (2017) 329–339.
  54. Y.-H. Guan, J. Ma, X.-C. Li, J.-Y. Fang, L.-W. Chen, Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/ peroxymonosulfate system, Environ. Sci. Technol., 45 (2011) 9308–9314.
  55. Y. Chen, C. Hu, J. Qu, M. Yang, Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation, J. Photochem. Photobiol., A, 197 (2008) 81–87.
  56. K.A. Loftin, C.D. Adams, M.T. Meyer, R. Surampalli, Effects of ionic strength, temperature, and pH on degradation of selected antibiotics, J. Environ. Qual., 37 (2008) 378–386.
  57. C. Zhao, M. Pelaez, X. Duan, H. Deng, K. O’Shea, D. Fatta- Kassinos, D.D. Dionysiou, Role of pH on photolytic and photocatalytic degradation of antibiotic oxytetracycline in aqueous solution under visible/solar light: kinetics and mechanism studies, Appl. Catal., B, 134 (2013) 83–92.
  58. A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review, Sustainable Cities Soc., 27 (2016) 407–418.
  59. L. Yu, Z. Ye, J. Li, C. Ma, C. Ma, X. Liu, H. Wang, L. Tang, P. Huo, Y. Yan, Photocatalytic degradation mechanism of tetracycline by Ag@ZnO/C core–shell plasmonic photocatalyst under visible light, Nano, 13 (2018) 1850065, doi: 10.1142/ S1793292018500650.
  60. F. Guo, W. Shi, W. Guan, H. Huang, Y. Liu, Carbon dots/g-C3N4/ZnO nanocomposite as efficient visible-light driven photocatalyst for tetracycline total degradation, Sep. Purif. Technol., 173 (2017) 295–303.
  61. J. Feng, L. Cheng, J. Zhang, O.K. Okoth, F. Chen, Preparation of BiVO4/ZnO composite film with enhanced visiblelight photoelectrocatalytic activity, Ceram. Int., 44 (2018) 3672–3677.
  62. L. Hu, G. Zhang, M. Liu, Q. Wang, P. Wang, Optimization of the catalytic activity of a ZnCo2O4 catalyst in peroxymonosulfate activation for bisphenol A removal using response surface methodology, Chemosphere, 212 (2018) 152–161.
  63. Y. Ding, H. Tang, S. Zhang, S. Wang, H. Tang, Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO2 mediated heterogeneous activation of peroxymonosulfate, J. Hazard. Mater., 317 (2016) 686–694.
  64. N.S. Shah, J.A. Khan, M. Sayed, Z.U.H. Khan, A.D. Rizwan, N. Muhammad, G. Boczkaj, B. Murtaza, M. Imran, H.M. Khan, Solar light driven degradation of norfloxacin using as-synthesized Bi3+ and Fe2+ co-doped ZnO with the addition of HSO5: toxicities and degradation pathways investigation, Chem. Eng. J., 351 (2018) 841–855.
  65. X. Chen, J. Zhou, T. Zhang, L. Ding, Enhanced degradation of tetracycline hydrochloride using photocatalysis and sulfate radical-based oxidation processes by Co/BiVO4 composites, J. Water Process Eng., 32 (2019) 100918, doi: 10.1016/j. jwpe.2019.100918.
  66. Y. Pang, L. Kong, H. Lei, D. Chen, G. Yuvaraja, Combined microwave-induced and photocatalytic oxidation using zinc ferrite catalyst for efficient degradation of tetracycline hydrochloride in aqueous solution, J. Taiwan Inst. Chem. Eng., 93 (2018) 397–404.
  67. V.M. Mboula, V. Hequet, Y. Gru, R. Colin, Y. Andres, Assessment of the efficiency of photocatalysis on tetracycline biodegradation, J. Hazard. Mater., 209 (2012) 355–364.
  68. E.F.C. Chaúque, J.N. Zvimba, J.C. Ngila, N. Musee, Stability studies of commercial ZnO engineered nanoparticles in domestic wastewater, Phys. Chem. Earth, Parts A/B/C, 67 (2014) 140–144.
  69. V.C. Srivastava, Photocatalytic oxidation of dye bearing wastewater by iron doped zinc oxide, Ind. Eng. Chem. Res., 52 (2013) 17790–17799.
  70. F. Liu, P. Yi, X. Wang, H. Gao, H. Zhang, Degradation of Acid Orange 7 by an ultrasound/ZnO-GAC/persulfate process, Sep. Purif. Technol., 194 (2018) 181–187.
  71. F. Meng, Y. Liu, J. Wang, X. Tan, H. Sun, S. Liu, S. Wang, Temperature dependent photocatalysis of g-C3N4, TiO2 and ZnO: differences in photoactive mechanism, J. Colloid Interface Sci., 532 (2018) 321–330.
  72. R.A. Palominos, M.A. Mondaca, A. Giraldo, G. Peñuela, M. Pérez-Moya, H.D. Mansilla, Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions, Catal. Today, 144 (2009) 100–105.
  73. Y. Qian, G. Xue, J. Chen, J. Luo, X. Zhou, P. Gao, Q. Wang, Oxidation of cefalexin by thermally activated persulfate: kinetics, products, and antibacterial activity change, J. Hazard. Mater., 354 (2018) 153–160.
  74. R. Xie, J. Ji, K. Guo, D. Lei, Q. Fan, D.Y.C. Leung, H. Huang, Wet scrubber coupled with UV/PMS process for efficient removal of gaseous VOCs: roles of sulfate and hydroxyl radicals, Chem. Eng. J., 356 (2019) 632–640.
  75. M. Mahdi-Ahmed, S. Chiron, Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater, J. Hazard. Mater., 265 (2014) 41–46.
  76. H. Sun, S. Liu, S. Liu, S. Wang, A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5 in visible light photocatalytic/photochemical oxidation of methylene blue, Appl. Catal., B, 146 (2014) 162–168.
  77. P.R. Shukla, S. Wang, H.M. Ang, M.O. Tadé, Photocatalytic oxidation of phenolic compounds using zinc oxide and sulphate radicals under artificial solar light, Sep. Purif. Technol., 70 (2010) 338–344.
  78. P. Shukla, I. Fatimah, S. Wang, H.M. Ang, M.O. Tadé, Photocatalytic generation of sulphate and hydroxyl radicals using zinc oxide under low-power UV to oxidise phenolic contaminants in wastewater, Catal. Today, 157 (2010) 410–414.
  79. A. Shad, J. Chen, R. Qu, A.A. Dar, M. Bin-Jumah, A.A. Allam, Z. Wang, Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2: kinetics, degradation products, and reaction pathways, Chem. Eng. J., 398 (2020) 125357, doi: 10.1016/j.cej.2020.125357.
  80. L. Duan, B. Sun, M. Wei, S. Luo, F. Pan, A. Xu, X. Li, Catalytic degradation of Acid Orange 7 by manganese oxide octahedral molecular sieves with peroxymonosulfate under visible light irradiation, J. Hazard. Mater., 285 (2015) 356–365.
  81. J. Chen, J. Xu, T. Liu, Y. Qian, X. Zhou, S. Xiao, Y. Zhang, Selective oxidation of tetracyclines by peroxymonosulfate in livestock wastewater: kinetics and non-radical mechanism, J. Hazard. Mater., 386 (2020) 121656, doi: 10.1016/j.jhazmat.2019.121656.
  82. C. Wang, J. Jian, Feasibility of tetracycline wastewater degradation by enhanced sonolysis, J. Adv. Oxid. Technol., 18 (2015) 39–46.