References
- T. Deblonde, C. Cossu-Leguille, P. Hartemann, Emerging
pollutants in wastewater: a review of the literature, Int. J. Hyg.
Environ. Health, 214 (2011) 442–448.
- J. Radjenović, M. Petrović, D. Barceló, Fate and distribution
of pharmaceuticals in wastewater and sewage sludge of the
conventional activated sludge (CAS) and advanced membrane
bioreactor (MBR) treatment, Water Res., 43 (2009) 831–841.
- J. Rivera-Utrilla, M. Sánchez-Polo, M.Á. Ferro-García,
G. Prados-Joya, R. Ocampo-Pérez, Pharmaceuticals as
emerging contaminants and their removal from water. A
review, Chemosphere, 93 (2013) 1268–1287.
- J.-M. Pépin, Impacts Écotoxicologiques de Certains Médicaments
Dans L’environnement, Université de Sherbrooke,
2006.
- K. Fent, A.A. Weston, D. Caminada, Ecotoxicology of
human pharmaceuticals, Aquat.Toxicol., 76 (2006) 122–159.
- G.W. Aherne, J. English, V. Marks, The role of immunoassay
in the analysis of microcontaminants in water samples,
Ecotoxicol. Environ. Saf., 9 (1985) 79–83.
- K. Kümmerer, Éd., Pharmaceuticals in the Environment:
Sources, Fate, Effects and Risks, 3rd ed., Springer-Verlag, Berlin,
Heidelberg, 2008.
- M. Zupanc, T. Kosjek, M. Petkovšek, M. Dular, B. Kompare,
B. Širok, Ž. Blažeka, E. Heath, Removal of pharmaceuticals
from wastewater by biological processes, hydrodynamic
cavitation and UV treatment, Ultrason. Sonochem., 20 (2013)
1104–1112.
- A.F. Almomani, M. Shawaqfah, R.R. Bhosale, A. Kumar,
Removal of emerging pharmaceuticals from wastewater by
ozone-based advanced oxidation processes, Environ. Prog.
Sustainable Energy, 35 (2016) 982–995.
- B.E. Benny Marie, B. Laura, V. Naddeo, V. Belgiorno, M. Daniel
G. de Luna, C.B. Florencio Jr., Removal of pharmaceuticals from
wastewater by intermittent electrocoagulation, Water, 9 (2017)
1–15, doi: 10.3390/w9020085.
- B.K. Zaied, M. Rashid, M. Nasrullah, A.W. Zularisam, D. Pant,
L. Singh, A comprehensive review on contaminants removal
from pharmaceutical wastewater by electrocoagulation
process, Sci. Total Environ., 726 (2020), doi: 10.1016/j.scitotenv.
2020.138095.
- S. Masson, L. Reinert, S. Guittonneau, L. Duclaux, Cinétiques
et isothermes d’adsorption de micropolluants sur un tissu et
un feutre de carbone activé, J. Water Sci., 28 (2015) 207–213.
- M.D. Ruthven, Principles of Adsorption and Adsorption
Processes, John Wiley & Sons, Wiley-Interscience Publication,
New York, 1984.
- V. Bernal, L. Giraldo, J.C. Moreno-Piraján, Physicochemical
properties of activated carbon: their effect on the adsorption
of pharmaceutical compounds and adsorbate–adsorbent
interactions, J. Carbon Res., 4 (2018) 1–20, doi: 10.3390/c4040062.
- A.L. Cazetta O.P. Junior, A.M.M. Vargas, A.P. da Silva,
X. Zou, T. Asefa, V.C. Almeida, Thermal regeneration study
of high surface area activated carbon obtained from coconut
shell: characterization and application of response surface
methodology, J. Anal. Appl. Pyrolysis, 101 (2013) 53–60.
- A. Sartape, A. Mandhare, P. Salvi, D. Pawar, P. Raut, M. Anuse,
S. Kolekar, Removal of Bi(III) with adsorption technique
using coconut shell activated carbon, Chin. J. Chem Eng.,
20 (2012) 768–775.
- M. Termoul, B. Bestani, N. Benderdouche, M. Belhakem,
E. Naffrechoux, Removal of phenol and 4-chlorophenol from
aqueous solutions by olive stone-based activated carbon,
Adsorpt. Sci. Technol., 24 (2016) 375–387.
- M. Benallou Benzekri, N. Benderdouche, B. Bestani, N. Douara,
L. Duclaux, Valorization of olive stones into a granular activated
carbon for the removal of Methylene blue in batch and fixed
bed modes, J. Mater. Environ. Sci., 9 (2018) 272–284.
- B.S. Girgis, A.N.A. El-Hendawy, Porosity development in
activated carbons obtained from date pits under chemical
activation with phosphoric acid, Microporous Mesoporous
Mater., 52 (2002) 105–117.
- A.A. Attia, B.S. Girgis, N.A. Fathy, Removal of methylene blue
by carbons derived from peach stones by H3PO4 activation:
batch and column studies, Dyes Pigm., 76 (2008) 282–289.
- N. Douara, B. Bestani, N. Benderdouche, L. Duclaux, Sawdustbased
activated carbon ability in the removal of phenol-based
organics from aqueous media, Desal. Water Treat., 57 (2016)
5529–5545.
- Y. Guo, D.A. Rockstraw, Physicochemical properties of carbons
prepared from pecan shell by phosphoric acid activation,
Bioresour. Technol., 98 (2007) 1513–1521.
- M. Al Bahri, L. Calvo, M.A. Gilarranz, J.J. Rodriguez, Activated
carbon from grape seeds upon chemical activation with
phosphoric acid: application to the adsorption of diuron
from water, Chem. Eng. J., 203 (2012) 348–356.
- B.V. Pereira, G.N.Matus, M.J. Costa, A.C.A. Dos Santos,
E.C. Silva-Zacarin, J.B. do Carmo, B. Nunes, Assessment
of biochemical alterations in the neotropical fish species
Phalloceros harpagos after acute and chronic exposure to the
drugs paracetamol and propranolol, Environ. Sci. Pollut. Res.,
25 (2018) 14899–14910.
- A. Macías-García, J. García-Sanz-Calcedo, J.P. Carrasco-
Amador, R. Segura-Cruz, Adsorption of paracetamol in hospital
wastewater through activated carbon filters, Sustainability,
11 (2019) 1–11.
- M.A.E. de Franco, C.B. de Carvalho, M.M. Bonetto, R.d.P. Soares,
L.A. Féris, Removal of amoxicillin from water by adsorption
onto activated carbon in batch process and fixed bed column:
kinetics, isotherms, experimental design and breakthrough
curves modelling, J. Cleaner Prod., 161 (2017) 947–956.
- ASTM, Standard Test Method for Determination of Iodine
Number of Activated Carbon, ASTM Annual Book, Section
15, Active Standard D4607–94, 1999.
- B. Bestani, N. Benderdouche, B. Benstaali, M. Belhakem,
A. Addou, Methylene blue and iodine adsorption onto an
activated desert plant, Bioresour. Technol., 99 (2008) 8441–8444.
- C. Kaewprasit, E. Hequet, N. Abidi, J.P. Gourlo, Application
of methylene blue adsorption to cotton fiber specific surface
area measurement: part I. Methodology, J. Cotton Sci., 2 (1998)
164–173.
- H.P. Boehm, Surface oxides on carbon and their analysis:
a critical assessment, Carbon, 40 (2002) 145–149.
- S. Attouti, B. Bestani, N. Benderdouche, Chemical surface
modification of seaweed species for cationic dyes removal
from simulated water, Indian J. Environ. Prot., 40 (2020) 462–472.
- L.A. Al-Khateeb, S. Almotiry, M.A. Salam, Adsorption of
pharmaceutical pollutants onto graphene nanoplatelets,
Chem. Eng. J., 248 (2014) 191–199.
- A.P. Terzyk, The influence of activated carbon surface chemical
composition on the adsorption of acetaminophen (paracetamol)
in vitro: part II. TG, FTIR, and XPS analysis of carbons and
the temperature dependence of adsorption kinetics at the
neutral pH, Colloid Surf., A, 177 (2001) 23–45.
- X. Ma, H. Yang, L. Yu, Y. Chen, Y. Li, Preparation, surface and
pore structure of high surface area activated carbon fibers
from bamboo by steam activation, Materials, 7 (2014) 4431–4441.
- N. Zhuo, Y. Lan, W. Yang, Z. Yang, X. Li, X. Zhou, Y. Liu,
J. Shen, X. Zhang Adsorption of three selected pharmaceuticals
and personal care products (PPCPs) onto MIL-101(Cr)/
natural polymer composite beads, Sep. Purif. Technol.,
177 (2017) 272–280.
- R.C. Ferreira, O.M. Couto Jr., K.Q. Carvalho, P.A. Arroyo,
M.A.S.D. Barros, Effect of solution pH on the removal of
paracetamol by activated carbon of dende coconut mesocarp,
Chem. Biochem. Eng. Q., 29 (2015) 47–53.
- I. Villaescusa, N. Fiol, J. Poch, A. Bianchi, C. Bazzicalupi,
Mechanism of paracetamol removal by vegetable wastes:
the contribution of π–π interactions, hydrogen bonding and
hydrophobic effect, Desalination, 270 (2011) 135–142.
- G.N. Rolinson, A.M.Geddes, The 50th anniversary of the
discovery of 6‐aminopenicillanic acid (6‐APA), Int. J. Antimicrob.
Agents, 29 (2007) 3–8.
- I. Langmuir, The constitution and fundamental properties
of solids and liquids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
- H.M.F. Freundlich, Over the adsorption in solution, J. Phys.
Chem., 57 (1906) 385–470.
- M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on
promoted iron catalysts, Acta Physicochim. URS, 12 (1940)
217–222.
- S. Budyanto, S. Soedjono, W. Irawaty, N. Indraswati, Studies of
adsorption equilibria and kinetics of amoxicillin from simulated
wastewater using activated carbon and natural bentonite,
J. Environ. Prot. Sci., 2 (2008) 72–80.
- G. Moussavi, A. Alahabadi, K. Yaghmaeian, M. Eskandari,
Preparation, characterization and adsorption potential of the
NH4Cl-induced activated carbon for the removal of amoxicillin
antibiotic from water, Chem. Eng. J., 217 (2016) 119–128.
- L. Limousy, I. Ghouma, A. Ouederni, M. Jeguirim, Amoxicillin
removal from aqueous solution using activated carbon
prepared by chemical activation of olive stone, Environ. Sci.
Pollut. Res., 24 (2017) 9993–10004.
- F. Medjdoub, K. Louhab, A. Hamouche, Comparative study of
the adsorption of paracetamol from aqueous solution on olive
stones and date pits, Des. Water Treat., 104 (2018) 225–233.
- S. Wong, Y. Lim, N. Ngadi, R. Mat, O. Hassan, I.M. Inuwa,
B. Nurul, H.L. Jiun, Removal of acetaminophen by activated
carbon synthesized from spent tea leaves: equilibrium, kinetics
and thermodynamics studies, Powder Technol., 338 (2018)
878–886.
- S. Lagergren, Zur theorie der sogenannten adsorption geloester
stoffe, Kungl. Svens. Vetenskapsakad. Handl., 24 (1898) 1–39.
- Y.S. Ho, G. Mckay, Kinetic models for the sorption of dye from
aqueous solution by wood, Process Saf. Environ., 76 (1998)
183–191.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon
from solution, J. Sanitary Eng. Div., 89 (1963) 31–60.
- D. Hu, L. Wang, Adsorption of amoxicillin onto quaternized
cellulose from flax oil: kinetic, equilibrium and thermodynamic
study, J. Taiwan Inst. Chem. Eng., 64 (2016) 227–234.