References

  1. T. Deblonde, C. Cossu-Leguille, P. Hartemann, Emerging pollutants in wastewater: a review of the literature, Int. J. Hyg. Environ. Health, 214 (2011) 442–448.
  2. J. Radjenović, M. Petrović, D. Barceló, Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment, Water Res., 43 (2009) 831–841.
  3. J. Rivera-Utrilla, M. Sánchez-Polo, M.Á. Ferro-García, G. Prados-Joya, R. Ocampo-Pérez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere, 93 (2013) 1268–1287.
  4. J.-M. Pépin, Impacts Écotoxicologiques de Certains Médicaments Dans L’environnement, Université de Sherbrooke, 2006.
  5. K. Fent, A.A. Weston, D. Caminada, Ecotoxicology of human pharmaceuticals, Aquat.Toxicol., 76 (2006) 122–159.
  6. G.W. Aherne, J. English, V. Marks, The role of immunoassay in the analysis of microcontaminants in water samples, Ecotoxicol. Environ. Saf., 9 (1985) 79–83.
  7. K. Kümmerer, Éd., Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks, 3rd ed., Springer-Verlag, Berlin, Heidelberg, 2008.
  8. M. Zupanc, T. Kosjek, M. Petkovšek, M. Dular, B. Kompare, B. Širok, Ž. Blažeka, E. Heath, Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment, Ultrason. Sonochem., 20 (2013) 1104–1112.
  9. A.F. Almomani, M. Shawaqfah, R.R. Bhosale, A. Kumar, Removal of emerging pharmaceuticals from wastewater by ozone-based advanced oxidation processes, Environ. Prog. Sustainable Energy, 35 (2016) 982–995.
  10. B.E. Benny Marie, B. Laura, V. Naddeo, V. Belgiorno, M. Daniel G. de Luna, C.B. Florencio Jr., Removal of pharmaceuticals from wastewater by intermittent electrocoagulation, Water, 9 (2017) 1–15, doi: 10.3390/w9020085.
  11. B.K. Zaied, M. Rashid, M. Nasrullah, A.W. Zularisam, D. Pant, L. Singh, A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process, Sci. Total Environ., 726 (2020), doi: 10.1016/j.scitotenv. 2020.138095.
  12. S. Masson, L. Reinert, S. Guittonneau, L. Duclaux, Cinétiques et isothermes d’adsorption de micropolluants sur un tissu et un feutre de carbone activé, J. Water Sci., 28 (2015) 207–213.
  13. M.D. Ruthven, Principles of Adsorption and Adsorption Processes, John Wiley & Sons, Wiley-Interscience Publication, New York, 1984.
  14. V. Bernal, L. Giraldo, J.C. Moreno-Piraján, Physicochemical properties of activated carbon: their effect on the adsorption of pharmaceutical compounds and adsorbate–adsorbent interactions, J. Carbon Res., 4 (2018) 1–20, doi: 10.3390/c4040062.
  15. A.L. Cazetta O.P. Junior, A.M.M. Vargas, A.P. da Silva, X. Zou, T. Asefa, V.C. Almeida, Thermal regeneration study of high surface area activated carbon obtained from coconut shell: characterization and application of response surface methodology, J. Anal. Appl. Pyrolysis, 101 (2013) 53–60.
  16. A. Sartape, A. Mandhare, P. Salvi, D. Pawar, P. Raut, M. Anuse, S. Kolekar, Removal of Bi(III) with adsorption technique using coconut shell activated carbon, Chin. J. Chem Eng., 20 (2012) 768–775.
  17. M. Termoul, B. Bestani, N. Benderdouche, M. Belhakem, E. Naffrechoux, Removal of phenol and 4-chlorophenol from aqueous solutions by olive stone-based activated carbon, Adsorpt. Sci. Technol., 24 (2016) 375–387.
  18. M. Benallou Benzekri, N. Benderdouche, B. Bestani, N. Douara, L. Duclaux, Valorization of olive stones into a granular activated carbon for the removal of Methylene blue in batch and fixed bed modes, J. Mater. Environ. Sci., 9 (2018) 272–284.
  19. B.S. Girgis, A.N.A. El-Hendawy, Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid, Microporous Mesoporous Mater., 52 (2002) 105–117.
  20. A.A. Attia, B.S. Girgis, N.A. Fathy, Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: batch and column studies, Dyes Pigm., 76 (2008) 282–289.
  21. N. Douara, B. Bestani, N. Benderdouche, L. Duclaux, Sawdustbased activated carbon ability in the removal of phenol-based organics from aqueous media, Desal. Water Treat., 57 (2016) 5529–5545.
  22. Y. Guo, D.A. Rockstraw, Physicochemical properties of carbons prepared from pecan shell by phosphoric acid activation, Bioresour. Technol., 98 (2007) 1513–1521.
  23. M. Al Bahri, L. Calvo, M.A. Gilarranz, J.J. Rodriguez, Activated carbon from grape seeds upon chemical activation with phosphoric acid: application to the adsorption of diuron from water, Chem. Eng. J., 203 (2012) 348–356.
  24. B.V. Pereira, G.N.Matus, M.J. Costa, A.C.A. Dos Santos, E.C. Silva-Zacarin, J.B. do Carmo, B. Nunes, Assessment of biochemical alterations in the neotropical fish species Phalloceros harpagos after acute and chronic exposure to the drugs paracetamol and propranolol, Environ. Sci. Pollut. Res., 25 (2018) 14899–14910.
  25. A. Macías-García, J. García-Sanz-Calcedo, J.P. Carrasco- Amador, R. Segura-Cruz, Adsorption of paracetamol in hospital wastewater through activated carbon filters, Sustainability, 11 (2019) 1–11.
  26. M.A.E. de Franco, C.B. de Carvalho, M.M. Bonetto, R.d.P. Soares, L.A. Féris, Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: kinetics, isotherms, experimental design and breakthrough curves modelling, J. Cleaner Prod., 161 (2017) 947–956.
  27. ASTM, Standard Test Method for Determination of Iodine Number of Activated Carbon, ASTM Annual Book, Section 15, Active Standard D4607–94, 1999.
  28. B. Bestani, N. Benderdouche, B. Benstaali, M. Belhakem, A. Addou, Methylene blue and iodine adsorption onto an activated desert plant, Bioresour. Technol., 99 (2008) 8441–8444.
  29. C. Kaewprasit, E. Hequet, N. Abidi, J.P. Gourlo, Application of methylene blue adsorption to cotton fiber specific surface area measurement: part I. Methodology, J. Cotton Sci., 2 (1998) 164–173.
  30. H.P. Boehm, Surface oxides on carbon and their analysis: a critical assessment, Carbon, 40 (2002) 145–149.
  31. S. Attouti, B. Bestani, N. Benderdouche, Chemical surface modification of seaweed species for cationic dyes removal from simulated water, Indian J. Environ. Prot., 40 (2020) 462–472.
  32. L.A. Al-Khateeb, S. Almotiry, M.A. Salam, Adsorption of pharmaceutical pollutants onto graphene nanoplatelets, Chem. Eng. J., 248 (2014) 191–199.
  33. A.P. Terzyk, The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH, Colloid Surf., A, 177 (2001) 23–45.
  34. X. Ma, H. Yang, L. Yu, Y. Chen, Y. Li, Preparation, surface and pore structure of high surface area activated carbon fibers from bamboo by steam activation, Materials, 7 (2014) 4431–4441.
  35. N. Zhuo, Y. Lan, W. Yang, Z. Yang, X. Li, X. Zhou, Y. Liu, J. Shen, X. Zhang Adsorption of three selected pharmaceuticals and personal care products (PPCPs) onto MIL-101(Cr)/ natural polymer composite beads, Sep. Purif. Technol., 177 (2017) 272–280.
  36. R.C. Ferreira, O.M. Couto Jr., K.Q. Carvalho, P.A. Arroyo, M.A.S.D. Barros, Effect of solution pH on the removal of paracetamol by activated carbon of dende coconut mesocarp, Chem. Biochem. Eng. Q., 29 (2015) 47–53.
  37. I. Villaescusa, N. Fiol, J. Poch, A. Bianchi, C. Bazzicalupi, Mechanism of paracetamol removal by vegetable wastes: the contribution of π–π interactions, hydrogen bonding and hydrophobic effect, Desalination, 270 (2011) 135–142.
  38. G.N. Rolinson, A.M.Geddes, The 50th anniversary of the discovery of 6‐aminopenicillanic acid (6‐APA), Int. J. Antimicrob. Agents, 29 (2007) 3–8.
  39. I. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  40. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–470.
  41. M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physicochim. URS, 12 (1940) 217–222.
  42. S. Budyanto, S. Soedjono, W. Irawaty, N. Indraswati, Studies of adsorption equilibria and kinetics of amoxicillin from simulated wastewater using activated carbon and natural bentonite, J. Environ. Prot. Sci., 2 (2008) 72–80.
  43. G. Moussavi, A. Alahabadi, K. Yaghmaeian, M. Eskandari, Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water, Chem. Eng. J., 217 (2016) 119–128.
  44. L. Limousy, I. Ghouma, A. Ouederni, M. Jeguirim, Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone, Environ. Sci. Pollut. Res., 24 (2017) 9993–10004.
  45. F. Medjdoub, K. Louhab, A. Hamouche, Comparative study of the adsorption of paracetamol from aqueous solution on olive stones and date pits, Des. Water Treat., 104 (2018) 225–233.
  46. S. Wong, Y. Lim, N. Ngadi, R. Mat, O. Hassan, I.M. Inuwa, B. Nurul, H.L. Jiun, Removal of acetaminophen by activated carbon synthesized from spent tea leaves: equilibrium, kinetics and thermodynamics studies, Powder Technol., 338 (2018) 878–886.
  47. S. Lagergren, Zur theorie der sogenannten adsorption geloester stoffe, Kungl. Svens. Vetenskapsakad. Handl., 24 (1898) 1–39.
  48. Y.S. Ho, G. Mckay, Kinetic models for the sorption of dye from aqueous solution by wood, Process Saf. Environ., 76 (1998) 183–191.
  49. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanitary Eng. Div., 89 (1963) 31–60.
  50. D. Hu, L. Wang, Adsorption of amoxicillin onto quaternized cellulose from flax oil: kinetic, equilibrium and thermodynamic study, J. Taiwan Inst. Chem. Eng., 64 (2016) 227–234.