References

  1. Y. Xu, Y. Wu, W. Zhang, X. Fan, Y. Wang, H. Zhang, Performance of artificial sweetener sucralose mineralization via UV/O3 process: kinetics, toxicity and intermediates, Chem. Eng. J., 353 (2018) 626–634.
  2. Q. Cai, J. Hu, Effect of UVA/LED/TiO2 photocatalysis treated sulfamethoxazole and trimethoprim containing wastewater on antibiotic resistance development in sequencing batch reactors, Water Res., 140 (2018) 251–260.
  3. J.I. Martínez-Costa, J. Rivera-Utrilla, R. Leyva-Ramos, M. Sánchez-Polo, I. Velo-Gala, Individual and simultaneous degradation of antibiotics sulfamethoxazole and trimethoprim by UV and solar radiation in aqueous solution using bentonite and vermiculite as photocatalysts, Appl. Clay Sci., 160 (2018) 217–225.
  4. H. Li, L. Duan, H. Wang, Y. Chen, F. Wang, S. Zhang, Photolysis of sulfadiazine under UV radiation: effects of the initial sulfadiazine concentration 136949, pH, NO3 and Cd2+, Chem. Phys. Lett., 739 (2020) 136949, doi: 10.1016/j.cplett.2019.136949.
  5. J.R. Kim, E. Kan, Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst, J. Environ. Manage., 180 (2016) 94–101.
  6. E. Ngumba, A. Gachanja, T. Tuhkanen, Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya, Sci. Total Environ., 539 (2016) 206–213.
  7. P. Verlicchi, M. Al Aukidy, E. Zambello, Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment-a review, Sci. Total Environ., 429 (2012) 123–155.
  8. A.I. Gomes, T.F. Soares, T. Silva, R.A.R. Boaventura, V.J.P. Vilar, Ozone-driven processes for mature urban landfill leachate treatment: organic matter degradation, biodegradability enhancement and treatment costs for different reactors configuration, Sci. Total Environ., 724 (2020) 138083, doi: 10.1016/ j.scitotenv.2020.138083.
  9. M.H. Abdurahman, A.Z. Abdullah, Mechanism and reaction kinetic of hybrid ozonation-ultrasonication treatment for intensified degradation of emerging organic contaminants in water: a critical review, Chem. Eng. Process., 154 (2020) 108047, doi: 10.1016/j.cep.2020.108047.
  10. M.M. Huber, S. Korhonen, T.A. Ternes, U. von Gunten, Oxidation of pharmaceuticals during water treatment with chlorine dioxide, Water Res., 39 (2005) 3607–3617.
  11. L. Wang, J. Ali, Z. Wang, N.A. Oladoja, R. Cheng, C. Zhang, G. Mailhot, G. Pan, Oxygen nanobubbles enhanced photodegradation of oxytetracycline under visible light: synergistic effect and mechanism, Chem. Eng. J., 388 (2020) 124227, doi: 10.1016/j.cej.2020.124227.
  12. J. Nahi, A. Radhakrishnan, B. Beena, Green synthesis of zinc oxide incorporated nanocellulose with visible light photocatalytic activity and application for the removal of antibiotic enrofloxacin from aqueousmedia, Mater. Today: Proc., (2020), doi: 10.1016/j.matpr.2020.05.253.
  13. A. Sharma, J. Ahmad, S.J.S. Flora, Application of advanced oxidation processes and toxicity assessment of transformation products, Environ. Res., 167 (2018) 223–233.
  14. Y. Bustos-Terrones, J.G. Rangel-Peraza, A. Sanhouse, E.R. Bandala, L.G. Torres, Degradation of organic matter from wastewater using advanced primary treatment by O3 and O3/UV in a pilot plant, Phys. Chem. Earth, 91 (2016) 61–67.
  15. P. Fu, J. Feng, T. Yang, H. Yang, Comparison of alkyl xanthates degradation in aqueous solution by the O3 and UV/O3 processes: efficiency, mineralization and ozone utilization, Miner. Eng., 81 (2015) 128–134.
  16. N. Taoufik, W. Boumya, F.Z. Janani, A. Elhalil, F.Z. Mahjoubi, N. Barka, Removal of emerging pharmaceutical pollutants: a systematic mapping study review, J. Environ. Chem. Eng., 8 (2020) 104251, doi: 10.1016/j.jece.2020.104251.
  17. S. Zheng, X. Li, X. Zhang, W. Wang, S. Yuan, Effect of inorganic regenerant properties on pharmaceutical adsorption and desorption performance on polymer anion exchange resin, Chemosphere, 182 (2017) 325–331.
  18. M. Sajid, M.K. Nazal, Ihsanullah, N. Baig, A.M. Osman, Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents: a critical review, Sep. Purif. Technol., 191 (2018) 400–423.
  19. R.F. Dantas, S. Contreras, C. Sans, S. Esplugas, Sulfamethoxazole abatement by means of ozonation, J. Hazard. Mater., 150 (2008) 790–794.
  20. H. Bader, J. Hoigné, Determination of ozone in water by the indigo method, Water Res., 15 (1981) 449–569.
  21. F. Wang, S. Ma, Y. Si, L. Dong, X. Wang, J. Yao, H. Chen, Z. Yi, W. Yao, B. Xing, Interaction mechanisms of antibiotic sulfamethoxazole with various graphene-based materials and multiwall carbon nanotubes and the effect of humic acid in water, Carbon, 114 (2017) 671–678.
  22. H. Wang, M. Mustafa, G. Yu, M. Ostman, Y. Cheng, Y. Wang, M. Tysklind, Oxidation of emerging biocides and antibiotics in wastewater by ozonation and the electro-peroxone process, Chemosphere, 235 (2019) 575–585.
  23. Y. Lee, D. Gerrity, M. Lee, A. Encinas, E. Salhi, S. Gamage, R. Trenholm, E. Wert, S. Snyder, U. Gunten, Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information, Environ. Sci. Technol., 47 (2013) 5872–5881.
  24. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O) in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 513–886.
  25. S. Chen, L. Blaney, P. Chen, S. Deng, M. Hopanna, Y. Bao, G. Yu, Ozonation of the 5-fluorouracil anticancer drug and its prodrug capecitabine: reaction kinetics, oxidation mechanisms, and residual toxicity, Front. Environ. Sci. Eng., 13 (2019) 59, doi: 10.1007/s11783-019-1143-2.
  26. X. Wang, J. Sun, D. Han, L. Bao, Q. Mei, B. Wei, Z. An, M. He, S. Yuan, J. Xie, J. Zhan, Q. Zhang, W. Wang, Gaseous and heterogeneous reactions of low-molecular-weight (LMW) unsaturated ketones with O3: mechanisms, kinetics, and effects of mineral dust in tropospheric chemical processes, Chem. Eng. J., 395 (2020) 125083, doi: 10.1016/j.cej.2020.125083.
  27. Y. Qian, X. Liu, K. Li, P. Gao, J. Chen, Z. Liu, X. Zhou, Y. Zhang, H. Chen, X. Li, G. Xue, Enhanced degradation of cephalosporin antibiotics by matrix components during thermally activated persulfate oxidation process, Chem. Eng. J., 384 (2020) 123332, doi: 10.1016/j.cej.2019.123332.
  28. A. Molina, E. Laborda, J.M. Gómez-Gil, F. Martínez-Ortiz, R.G. Compton, Analytical solutions for the study of homogeneous first-order chemical kinetics via UV–vis spectroelectrochemistry, J. Electroanal. Chem., 819 (2018) 202–213.
  29. S. Yang, Y. Song, F. Chang, K. Wang, Evaluation of chemistry and key reactor parameters for industrial water treatment applications of the UV/O3 process, Environ. Res., 188 (2020) 109660, doi: 10.1016/j.envres.2020.109660.
  30. P. Fu, L. Wang, Y. Ma, Z. Hou, A comparative study on the degradation of ethyl xanthate collector by O3, UV254 nm, UV185+254 nm, O3/UV254 nm and O3/UV185+254 nm processes, J. Environ. Chem. Eng., 8 (2020) 103628, doi: 10.1016/j.jece.2019.103628.
  31. A. Fernandes, M. Gągol, P. Makoś, J.A. Khan, G. Boczkaj, Integrated photocatalytic advanced oxidation system (TiO2/UV/O3/H2O2) for degradation of volatile organic compounds, Sep. Purif. Technol., 224 (2019) 1–14.
  32. W. Yao, S.W. Ur Rehman, H. Wang, H. Yang, G. Yu, Y. Wang, Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O3, and an electro-peroxone process, Water Res., 138 (2018) 106–117.
  33. M. Krakstrom, S. Saeid, P. Tolvanen, T. Salmi, P. Eklund, L. Kronberg, Catalytic ozonation of the antibiotic sulfadiazine: reaction kinetics and transformation mechanisms, Chemosphere, 247 (2020) 125853, doi: 10.1016/j.chemosphere.2020.125853.
  34. H. Zhang, Z. Wang, R. Li, J. Guo, Y. Li, J. Zhu, X. Xie, TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices, Chemosphere, 185 (2017) 351–360.
  35. W.Q. Guo, R.L. Yin, X.J. Zhou, J.S. Du, H.O. Cao, S.S. Yang, N.Q. Ren, Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water: kinetics, mechanisms, and pathways, Ultrason. Sonochem., 22 (2015) 182–187.
  36. Y. Zhang, L. Li, Z. Pan, Y. Zhu, Y. Shao, Y. Wang, K. Yu, Degradation of sulfamethoxazole by UV/persulfate in different water samples: influential factors, transformation products and toxicity, Chem. Eng. J., 379 (2020) 122354, doi: 10.1016/j. cej.2019.122354.
  37. N. Shahmahdi, R. Dehghanzadeh, H. Aslani, S.B. Shokouhi, Performance evaluation of waste iron shavings (Fe0) for catalytic ozonation in removal of sulfamethoxazole from municipal wastewater treatment plant effluent in a batch mode pilot plant, Chem. Eng. J., 383 (2020) 123093, doi: 10.1016/j.cej.2019.123093.
  38. Y. Yang, X. Lu, J. Jiang, J. Ma, G. Liu, Y. Cao, W. Liu, J. Li, S. Pang, X. Kong, C. Luo, Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): formation of oxidation products and effect of bicarbonate, Water Res., 118 (2017) 196–207.
  39. L. Lai, J. Yan, J. Li, B. Lai, Co/Al2O3-EPM as peroxymonosulfate activator for sulfamethoxazole removal: performance, biotoxicity, degradation pathways and mechanism, Chem. Eng. J., 343 (2018) 676–688.
  40. M. Dlugosz, P. Zmudzki, A. Kwiecien, K. Szczubialka, J. Krzek, M. Nowakowska, Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2- expanded perlite photocatalyst, J. Hazard. Mater., 298 (2015) 146–153.
  41. J. Martini, C.A. Orge, J.L. Faria, M.F.R. Pereira, O.S.G.P. Soares, Sulfamethoxazole degradation by combination of advanced oxidation processes, J. Environ. Chem. Eng., 6 (2018) 4054–4060.
  42. K. Lekkerkerker-Teunissen, M.J. Benotti, S.A. Snyder, H.C. van Dijk, Transformation of atrazine, carbamazepine, diclofenac and sulfamethoxazole by low and medium pressure UV and UV/H2O2 treatment, Sep. Purif. Technol., 96 (2012) 33–43.
  43. D. Nasuhoglu, V. Yargeau, D. Berk, Photo-removal of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV-C radiation (lambdamax = 254 nm), J. Hazard. Mater., 186 (2011) 67–75.
  44. K.-O. Hiller, B. Masloch, M. Gobl, K.-D. Amus, Mechanism of the hydroxyl radical induced oxidation of methionine in aqueous solution, J. Am. Chem. Soc., 103 (1981) 2734–2743.
  45. Y. Zhang, H. Wang, Y. Li, B. Wang, J. Huang, S. Deng, G. Yu, Y. Wang, Removal of micropollutants by an electrochemically driven UV/chlorine process for decentralized water treatment, Water Res., 183 (2020) 116115, doi: 10.1016/j.watres.2020.116115.
  46. Z.C. Gao, Y.L. Lin, B. Xu, Y. Xia, C.Y. Hu, T.Y. Zhang, H. Qian, T.C. Cao, N.Y. Gao, Effect of bromide and iodide on halogenated by-product formation from different organic precursors during UV/chlorine processes, Water Res., 182 (2020) 116035, doi: 10.1016/j.watres.2020.116035.
  47. S. Wang, X. Song, C. Hao, Z. Gao, J. Chen, J. Qiu, Elucidating triplet-sensitized photolysis mechanisms of sulfadiazine and metal ions effects by quantum chemical calculations, Chemosphere, 122 (2015) 62–69.
  48. X. Ao, W. Liu, W. Sun, C. Yang, Z. Lu, C. Li, Mechanisms and toxicity evaluation of the degradation of sulfamethoxazole by MPUV/PMS process, Chemosphere, 212 (2018) 365–375.
  49. X. Liu, T. Garoma, Z. Chen, L. Wang, Y. Wu, SMX degradation by ozonation and UV radiation: a kinetic study, Chemosphere, 87 (2012) 1134–1140.