References

  1. L. Rizzo, S. Malato, D. Antakyali, V.G. Beretsou, M.B. Đolić, W. Gernjak, E. Heath, I. Ivancev-Tumbas, P. Karaolia, A.R. Lado Ribeiro, G. Mascolo, C.S. McArdell, H. Schaar, A.M.T. Silva, D. Fatta-Kassinos, Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater, Sci. Total Environ., 655 (2019) 986–1008.
  2. Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 473–474 (2014) 619–641.
  3. The Swis Federal Council, Waters Protection Ordinance (WPO), Vol. 2011, 2018, pp. 1–70.
  4. L. Clarizia, D. Russo, I. Di Somma, R. Marotta, R. Andreozzi, Homogeneous photo-Fenton processes at near neutral pH: a review, Appl. Catal., B, 209 (2017) 358–371.
  5. B.S. Souza, R.F. Dantas, M. Agulló-Barceló, F. Lucena, C. Sans, S. Esplugas, M. Dezotti, Evaluation of UV/H2O2 for the disinfection and treatment of municipal secondary effluents for water reuse, J. Chem. Technol. Biotechnol., 88 (2013) 1697–1706.
  6. R.C. Martins, R.F. Dantas, C. Sans, S. Esplugas, R.M. Quinta-Ferreira, Ozone/H2O2 performance on the degradation of sulfamethoxazole, Ozone Sci. Eng., 37 (2015) 509–517.
  7. L.P. Glugoski, P.D.J. Cubas, S.T. Fujiwara, Reactive Black 5 dye degradation using filters of smuggled cigarette modified with Fe3+, Environ. Sci. Pollut. Res., 24 (2017) 6143–6150.
  8. S. Shekoohiyan, S. Rtimi, G. Moussavi, S. Giannakis, C. Pulgarin, Enhancing solar disinfection of water in PET bottles by optimized in-situ formation of iron oxide films. From heterogeneous to homogeneous action modes with H2O2 vs. O2 – Part 1: iron salts as oxide precursors, Chem. Eng. J., 358 (2019) 211–224.
  9. L. Narayanasamy, T. Murugesan, Degradation of Alizarin Yellow R using UV/H2O2 advanced oxidation process, Environ. Prog. Sustainable Energy, 33 (2014) 482–489.
  10. B. Bethi, S.H. Sonawane, B.A. Bhanvase, S.P. Gumfekar, Nanomaterials-based advanced oxidation processes for wastewater treatment: a review, Chem. Eng. Process. Process Intensif., 109 (2016) 178–189.
  11. L. Victoria, S. Murillo, A. Schärer, S. Giannakis, S. Rtimi, C. Pulgarín, Iron-coated polymer fi lms with high antibacterial activity under indoor and outdoor light, prepared by di ff erent facile pre-treatment and deposition methods, Appl. Catal., B, 243 (2019) 161–174.
  12. E. Ortega-Gómez, M.M. Ballesteros Martín, B. Esteban García, J.A. Sánchez Pérez, P. Fernández Ibáñez, Solar photo-Fenton for water disinfection: an investigation of the competitive role of model organic matter for oxidative species, Appl. Catal., B, 148–149 (2014) 484–489.
  13. J. Rodríguez-Chueca, M.I. Polo-López, R. Mosteo, M.P. Ormad, P. Fernández-Ibáñez, Disinfection of real and simulated urban wastewater effluents using a mild solar photo-Fenton, Appl. Catal., B, 150–151 (2014) 619–629.
  14. K. Kuma, S. Nakabayashi, K. Matsunaga, Photoreduction of Fe(III) by hydroxycarboxylic acids in seawater, Water Res., 29 (1995) 1559–1569.
  15. R. Takahashi, N. Fujimoto, M. Suzuki, T. Endo, Biodegradabilities of ethylenediamine-N,N'-disuccinic acid (EDDS) and other chelating agents, Biosci. Biotechnol. Biochem., 61 (1997) 1957–1959.
  16. L. Chen, T. Liu, C. Ma, Metal complexation and biodegradation of EDTA and S,S-EDDS: a density functional theory study, J. Phys. Chem. A, 114 (2010) 443–454.
  17. W. Huang, M. Brigante, F. Wu, C. Mousty, K. Hanna, G. Mailhot, Assessment of the Fe(III)-EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A, Environ. Sci. Technol., 47 (2013) 1952–1959.
  18. S. Papoutsakis, F.F. Brites-Nóbrega, C. Pulgarin, S. Malato, Benefits and limitations of using Fe(III)-EDDS for the treatment of highly contaminated water at near-neutral pH, J. Photochem. Photobiol., A, 303–304 (2015) 1–7.
  19. Y. Wu, M. Passananti, M. Brigante, W. Dong, G. Mailhot, Fe(III)–EDDS complex in Fenton and photo-Fenton processes: from the radical formation to the degradation of a target compound, Environ. Sci. Pollut. Res., 21 (2014) 12154–12162.
  20. Y. Zhang, N. Klamerth, P. Chelme-Ayala, M. Gamal El-Din, Comparison of nitrilotriacetic acid and [S,S]-ethylenediamine- N,N’-disuccinic acid in UV-Fenton for the treatment of oil sands process-affected water at natural pH, Environ. Sci. Technol., 50 (2016) 10535–10544.
  21. T. Lehóczki, É. Józsa, K. Osz, Ferrioxalate actinometry with online spectrophotometric detection, J. Photochem. Photobiol., A, 251 (2013) 63–68.
  22. S. Goldstein, J. Rabani, The ferrioxalate and iodide-iodate actinometers in the UV region, J. Photochem. Photobiol., A, 193 (2008) 50–55.
  23. Y. Chen, N. Li, Y. Zhang, L. Zhang, Novel low-cost Fenton-like layered Fe-titanate catalyst: preparation, characterization and application for degradation of organic colorants, J. Colloid Interface Sci., 422 (2014) 9–15.
  24. A. De Luca, Fenton and Photo-Fenton Like at Neutral pH for the Removal of Emerging Contaminants in Water and Wastewater Effluents, Ph.D. Thesis, Universitat De Barcelona, 2016, 198 p. Available at: http://diposit.ub.edu/dspace/bitstream/ 2445/106497/1/Antonella%20De%20Luca_THESIS.pdf
  25. C. Lei, Y. Sun, D.C.W. Tsang, D. Lin, Environmental transformations and ecological effects of iron-based nanoparticles, Environ. Pollut., 232 (2018) 10–30.
  26. F. Gozzi, A. Machulek, V.S. Ferreira, M.E. Osugi, A.P.F. Santos, J.A. Nogueira, R.F. Dantas, S. Esplugas, S.C. de Oliveira, Investigation of chlorimuron-ethyl degradation by Fenton, photo-Fenton and ozonation processes, Chem. Eng. J., 210 (2012) 444–450.
  27. S. Nahim-Granados, I. Oller, S. Malato, J.A. Sánchez-Pérez, M.I. Polo-Lopez, Commercial fertilizer as effective iron chelate (Fe3+-EDDHA) for wastewater disinfection under natural sunlight for reusing in irrigation, Appl. Catal., B, 253 (2019) 286–292.
  28. G.E. Budnick, R.T. Howard, D. Mayo, Comparison of Colilert-18 to the mTEC Agar Method for the Enumeration of Escherichia coli in Recreational Waters, American Society of Microbiologists Annual Convention, Connecticut, 2001.
  29. US EPA, Guidelines Establishing Test Procedures for the Analysis of Pollutants; Analytical Methods for Biological Pollutants in Ambient Water, Vol. 66, 2003, pp. 24–42. Available at: https://www.idexx.com/resource-library/water/water-regarticle5AP. pdf
  30. S.G. Michael, I. Michael-Kordatou, V.G. Beretsou, T. Jäger, Solar photo-Fenton oxidation followed by adsorption on activated carbon for the minimisation of antibiotic resistance determinants and toxicity present in urban wastewater, Appl. Catal., B, 244 (2019) 871–880.
  31. United States Environmental Protection Agency, Analytical Methods Approved for Compliance Monitoring under the Revised Total Coliform Rule, 2017.
  32. E. Fox, Microbiology Methods for Drinking Water Laboratories Origins of Drinking Water Bacteriological Testing, Conference Proceedings, London. Available at: https://cdn. ymaws.com/www.vwea.org/resource/resmgr/Conference_ Proceedings/2016/LPC/5._Microbiology_Methods_for_.pdf.
  33. S.I. Niemela, J.V. Lee, C.R. Fricker, A comparison of the International Standards Organisation reference method for the detection of coliforms and Escherichia coli in water with a defined substrate procedure, J. Appl. Microbiol., 95 (2003) 1285–1292.
  34. ISO 6332, Water Quality - Determination of Iron - Spectrometric Method Using 1,10-Phenanthroline, 1988.
  35. Y. Sun, J.J. Pignatello, Chemical treatment of pesticide wastes, evaluation of iron(III) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circumneutral pH, J. Agric. Food Chem., 40 (1992) 322–327.
  36. A. De Luca, R.F. Dantas, S. Esplugas, Assessment of iron chelates efficiency forphoto-Fenton at neutral pH, Water Res., 61 (2014) 232–242.
  37. V.D. Masliy, A.V. Selyukov, Applying hydrogen peroxide for oxidizing underground water iron, Chem. Sustain. Dev., 17 (2009) 527–531.
  38. M. Gar Alalm, A. Tawfik, S. Ookawara, Comparison of solar TiO2 photocatalysis and solar photo-Fenton for treatment of pesticides industry wastewater: operational conditions, kinetics, and costs, J. Water Process Eng., 8 (2015) 55–63.
  39. C. Bouasla, F. Ismail, M.E.H. Samar, Effects of operator parameters, anions and cations on the degradation of AY99 in an aqueous solution using Fenton’s reagent. Optimization and kinetics study, Int. J. Ind. Chem., 3 (2012) 1–12, doi: 10.1186/ 2228-5547-3-15.
  40. E. Ortega-Gómez, P. Fernández-Ibáñez, M.M. Ballesteros Martín, M.I. Polo-López, B. Esteban García, J.A. Sánchez Pérez, Water disinfection using photo-Fenton: effect of temperature on Enterococcus faecalis survival, Water Res., 46 (2012) 6154–6162.
  41. A. Bunescu, P. Besse-Hoggan, M. Sancelme, G. Mailhot, A.M. Delort, Fate of the nitrilotriacetic acid-Fe(III) complex during photodegradation and biodegradation by Rhodococcus rhodochrous, Appl. Environ. Microbiol., 74 (2008) 6320–6326.
  42. I. García-Fernández, S. Miralles-Cuevas, I. Oller, S. Malato, P. Fernández-Ibáñez, M.I. Polo-López, Inactivation of E. coli and E. faecalis by solar photo-Fenton with EDDS complex at neutral pH in municipal wastewater effluents, J. Hazard. Mater., 372 (2018) 85–93.
  43. S. Giannakis, M. Voumard, D. Grandjean, A. Magnet, L.F. De Alencastro, C. Pulgarin, Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: influence of the secondary (pre)treatment on the efficiency of advanced oxidation processes, Water Res., 102 (2016) 505–515.