References
- L. Rizzo, S. Malato, D. Antakyali, V.G. Beretsou, M.B. Đolić,
W. Gernjak, E. Heath, I. Ivancev-Tumbas, P. Karaolia, A.R. Lado
Ribeiro, G. Mascolo, C.S. McArdell, H. Schaar, A.M.T. Silva,
D. Fatta-Kassinos, Consolidated vs new advanced treatment
methods for the removal of contaminants of emerging concern
from urban wastewater, Sci. Total Environ., 655 (2019) 986–1008.
- Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang,
S. Liang, X.C. Wang, A review on the occurrence of
micropollutants in the aquatic environment and their fate and
removal during wastewater treatment, Sci. Total Environ.,
473–474 (2014) 619–641.
- The Swis Federal Council, Waters Protection Ordinance (WPO),
Vol. 2011, 2018, pp. 1–70.
- L. Clarizia, D. Russo, I. Di Somma, R. Marotta, R. Andreozzi,
Homogeneous photo-Fenton processes at near neutral pH:
a review, Appl. Catal., B, 209 (2017) 358–371.
- B.S. Souza, R.F. Dantas, M. Agulló-Barceló, F. Lucena,
C. Sans, S. Esplugas, M. Dezotti, Evaluation of UV/H2O2 for the
disinfection and treatment of municipal secondary effluents for
water reuse, J. Chem. Technol. Biotechnol., 88 (2013) 1697–1706.
- R.C. Martins, R.F. Dantas, C. Sans, S. Esplugas, R.M. Quinta-Ferreira, Ozone/H2O2 performance on the degradation of
sulfamethoxazole, Ozone Sci. Eng., 37 (2015) 509–517.
- L.P. Glugoski, P.D.J. Cubas, S.T. Fujiwara, Reactive Black 5 dye
degradation using filters of smuggled cigarette modified with
Fe3+, Environ. Sci. Pollut. Res., 24 (2017) 6143–6150.
- S. Shekoohiyan, S. Rtimi, G. Moussavi, S. Giannakis,
C. Pulgarin, Enhancing solar disinfection of water in PET
bottles by optimized in-situ formation of iron oxide films.
From heterogeneous to homogeneous action modes with H2O2
vs. O2 – Part 1: iron salts as oxide precursors, Chem. Eng. J.,
358 (2019) 211–224.
- L. Narayanasamy, T. Murugesan, Degradation of Alizarin
Yellow R using UV/H2O2 advanced oxidation process, Environ.
Prog. Sustainable Energy, 33 (2014) 482–489.
- B. Bethi, S.H. Sonawane, B.A. Bhanvase, S.P. Gumfekar,
Nanomaterials-based advanced oxidation processes for
wastewater treatment: a review, Chem. Eng. Process. Process
Intensif., 109 (2016) 178–189.
- L. Victoria, S. Murillo, A. Schärer, S. Giannakis, S. Rtimi,
C. Pulgarín, Iron-coated polymer fi lms with high antibacterial
activity under indoor and outdoor light, prepared by di ff erent
facile pre-treatment and deposition methods, Appl. Catal., B,
243 (2019) 161–174.
- E. Ortega-Gómez, M.M. Ballesteros Martín, B. Esteban García,
J.A. Sánchez Pérez, P. Fernández Ibáñez, Solar photo-Fenton
for water disinfection: an investigation of the competitive role
of model organic matter for oxidative species, Appl. Catal., B,
148–149 (2014) 484–489.
- J. Rodríguez-Chueca, M.I. Polo-López, R. Mosteo, M.P. Ormad,
P. Fernández-Ibáñez, Disinfection of real and simulated urban
wastewater effluents using a mild solar photo-Fenton, Appl.
Catal., B, 150–151 (2014) 619–629.
- K. Kuma, S. Nakabayashi, K. Matsunaga, Photoreduction of
Fe(III) by hydroxycarboxylic acids in seawater, Water Res.,
29 (1995) 1559–1569.
- R. Takahashi, N. Fujimoto, M. Suzuki, T. Endo, Biodegradabilities
of ethylenediamine-N,N'-disuccinic acid (EDDS) and other
chelating agents, Biosci. Biotechnol. Biochem., 61 (1997)
1957–1959.
- L. Chen, T. Liu, C. Ma, Metal complexation and biodegradation
of EDTA and S,S-EDDS: a density functional theory study,
J. Phys. Chem. A, 114 (2010) 443–454.
- W. Huang, M. Brigante, F. Wu, C. Mousty, K. Hanna, G. Mailhot,
Assessment of the Fe(III)-EDDS complex in Fenton-like
processes: from the radical formation to the degradation of
bisphenol A, Environ. Sci. Technol., 47 (2013) 1952–1959.
- S. Papoutsakis, F.F. Brites-Nóbrega, C. Pulgarin, S. Malato,
Benefits and limitations of using Fe(III)-EDDS for the treatment
of highly contaminated water at near-neutral pH, J. Photochem.
Photobiol., A, 303–304 (2015) 1–7.
- Y. Wu, M. Passananti, M. Brigante, W. Dong, G. Mailhot,
Fe(III)–EDDS complex in Fenton and photo-Fenton processes:
from the radical formation to the degradation of a target
compound, Environ. Sci. Pollut. Res., 21 (2014) 12154–12162.
- Y. Zhang, N. Klamerth, P. Chelme-Ayala, M. Gamal El-Din,
Comparison of nitrilotriacetic acid and [S,S]-ethylenediamine-
N,N’-disuccinic acid in UV-Fenton for the treatment of oil sands
process-affected water at natural pH, Environ. Sci. Technol.,
50 (2016) 10535–10544.
- T. Lehóczki, É. Józsa, K. Osz, Ferrioxalate actinometry with
online spectrophotometric detection, J. Photochem. Photobiol.,
A, 251 (2013) 63–68.
- S. Goldstein, J. Rabani, The ferrioxalate and iodide-iodate
actinometers in the UV region, J. Photochem. Photobiol., A,
193 (2008) 50–55.
- Y. Chen, N. Li, Y. Zhang, L. Zhang, Novel low-cost Fenton-like
layered Fe-titanate catalyst: preparation, characterization and
application for degradation of organic colorants, J. Colloid
Interface Sci., 422 (2014) 9–15.
- A. De Luca, Fenton and Photo-Fenton Like at Neutral pH for the
Removal of Emerging Contaminants in Water and Wastewater
Effluents, Ph.D. Thesis, Universitat De Barcelona, 2016,
198 p. Available at: http://diposit.ub.edu/dspace/bitstream/
2445/106497/1/Antonella%20De%20Luca_THESIS.pdf
- C. Lei, Y. Sun, D.C.W. Tsang, D. Lin, Environmental transformations
and ecological effects of iron-based nanoparticles,
Environ. Pollut., 232 (2018) 10–30.
- F. Gozzi, A. Machulek, V.S. Ferreira, M.E. Osugi, A.P.F. Santos,
J.A. Nogueira, R.F. Dantas, S. Esplugas, S.C. de Oliveira,
Investigation of chlorimuron-ethyl degradation by Fenton,
photo-Fenton and ozonation processes, Chem. Eng. J., 210 (2012)
444–450.
- S. Nahim-Granados, I. Oller, S. Malato, J.A. Sánchez-Pérez,
M.I. Polo-Lopez, Commercial fertilizer as effective iron chelate
(Fe3+-EDDHA) for wastewater disinfection under natural sunlight
for reusing in irrigation, Appl. Catal., B, 253 (2019) 286–292.
- G.E. Budnick, R.T. Howard, D. Mayo, Comparison of
Colilert-18 to the mTEC Agar Method for the Enumeration
of Escherichia coli in Recreational Waters, American Society of
Microbiologists Annual Convention, Connecticut, 2001.
- US EPA, Guidelines Establishing Test Procedures for the
Analysis of Pollutants; Analytical Methods for Biological
Pollutants in Ambient Water, Vol. 66, 2003, pp. 24–42. Available
at: https://www.idexx.com/resource-library/water/water-regarticle5AP.
pdf
- S.G. Michael, I. Michael-Kordatou, V.G. Beretsou, T. Jäger,
Solar photo-Fenton oxidation followed by adsorption on
activated carbon for the minimisation of antibiotic resistance
determinants and toxicity present in urban wastewater, Appl.
Catal., B, 244 (2019) 871–880.
- United States Environmental Protection Agency, Analytical
Methods Approved for Compliance Monitoring under the
Revised Total Coliform Rule, 2017.
- E. Fox, Microbiology Methods for Drinking Water Laboratories
Origins of Drinking Water Bacteriological Testing,
Conference Proceedings, London. Available at: https://cdn.
ymaws.com/www.vwea.org/resource/resmgr/Conference_
Proceedings/2016/LPC/5._Microbiology_Methods_for_.pdf.
- S.I. Niemela, J.V. Lee, C.R. Fricker, A comparison of the
International Standards Organisation reference method for
the detection of coliforms and Escherichia coli in water with a
defined substrate procedure, J. Appl. Microbiol., 95 (2003)
1285–1292.
- ISO 6332, Water Quality - Determination of Iron - Spectrometric
Method Using 1,10-Phenanthroline, 1988.
- Y. Sun, J.J. Pignatello, Chemical treatment of pesticide wastes,
evaluation of iron(III) chelates for catalytic hydrogen peroxide
oxidation of 2,4-D at circumneutral pH, J. Agric. Food Chem.,
40 (1992) 322–327.
- A. De Luca, R.F. Dantas, S. Esplugas, Assessment of iron
chelates efficiency forphoto-Fenton at neutral pH, Water Res.,
61 (2014) 232–242.
- V.D. Masliy, A.V. Selyukov, Applying hydrogen peroxide
for oxidizing underground water iron, Chem. Sustain. Dev.,
17 (2009) 527–531.
- M. Gar Alalm, A. Tawfik, S. Ookawara, Comparison of solar
TiO2 photocatalysis and solar photo-Fenton for treatment
of pesticides industry wastewater: operational conditions,
kinetics, and costs, J. Water Process Eng., 8 (2015) 55–63.
- C. Bouasla, F. Ismail, M.E.H. Samar, Effects of operator
parameters, anions and cations on the degradation of AY99 in
an aqueous solution using Fenton’s reagent. Optimization and
kinetics study, Int. J. Ind. Chem., 3 (2012) 1–12, doi: 10.1186/
2228-5547-3-15.
- E. Ortega-Gómez, P. Fernández-Ibáñez, M.M. Ballesteros
Martín, M.I. Polo-López, B. Esteban García, J.A. Sánchez Pérez,
Water disinfection using photo-Fenton: effect of temperature on
Enterococcus faecalis survival, Water Res., 46 (2012) 6154–6162.
- A. Bunescu, P. Besse-Hoggan, M. Sancelme, G. Mailhot,
A.M. Delort, Fate of the nitrilotriacetic acid-Fe(III) complex
during photodegradation and biodegradation by Rhodococcus
rhodochrous, Appl. Environ. Microbiol., 74 (2008) 6320–6326.
- I. García-Fernández, S. Miralles-Cuevas, I. Oller, S. Malato,
P. Fernández-Ibáñez, M.I. Polo-López, Inactivation of E. coli and
E. faecalis by solar photo-Fenton with EDDS complex at neutral
pH in municipal wastewater effluents, J. Hazard. Mater.,
372 (2018) 85–93.
- S. Giannakis, M. Voumard, D. Grandjean, A. Magnet, L.F. De
Alencastro, C. Pulgarin, Micropollutant degradation, bacterial
inactivation and regrowth risk in wastewater effluents:
influence of the secondary (pre)treatment on the efficiency of
advanced oxidation processes, Water Res., 102 (2016) 505–515.