References

  1. J. Kirchherr, L. Piscicelli, R. Bour, E. Kostense-Smit, J. Muller, A. Huibrechtse-Truijens, M. Hekkert, Barriers to the circular economy: evidence from the European Union (EU), Ecol. Econ., 150 (2018) 264–272.
  2. P. Morseletto, Targets for a circular economy, Resour. Conserv. Recycl., 153 (2020) 104553, doi: 10.1016/j.resconrec.2019.104553.
  3. J.P. Vareda, A.J.M. Valente, L. Durães, Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review, J. Environ. Manage., 246 (2019) 101–118.
  4. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  5. V.K. Gupta, A. Nayak, S. Agarwal, Bioadsorbents for remediation of heavy metals: current status and their future prospects, Environ. Eng. Res., 20 (2015) 1–18.
  6. D. Andrews, A. Raychaudhuri, C. Frias, Environmentally sound technologies for recycling secondary lead, J. Power Sources, 88 (2000) 124–129.
  7. Z. Sun, H. Cao, X. Zhang, X. Lin, W. Zheng, G. Cao, Y. Sun, Y. Zhang, Spent lead-acid battery recycling in China – a review and sustainable analyses on mass flow of lead, Waste Manage., 64 (2017) 190–201.
  8. K. Lin, W. Huang, R.B. Finkelman, J. Chen, S. Yi, X. Cui, Y. Wang, Distribution, modes of occurrence, and main factors influencing lead enrichment in Chinese coals, Int. J. Coal Sci. Technol., 7 (2020) 1–18.
  9. NTPA 001/2005. Available at: http://www.gnm.ro/otherdocs/ nsbhrtjqp.pdf
  10. M.H. Abdel-Aziz, I. Nirdosh, G.H. Sedahmed, Ion-exchangeassisted electrochemical removal of heavy metals from dilute solutions in a stirred-tank electrochemical reactor: a masstransfer study, Ind. Eng. Chem. Res., 52 (2013) 11655–11662.
  11. B.L. Rivas, M. Palencia, Removal-concentration of pollutant metal-ions by water-soluble polymers in conjunction with double emulsion systems: a new hybrid method of membranebased separation, Sep. Purif. Technol., 81 (2011) 435–443.
  12. N.S. Yousef, R. Farouq, R. Hazzaa, Adsorption kinetics and isotherms for the removal of nickel ions from aqueous solutions by an ion-exchange resin: application of two and three parameter isotherm models, Des. Water Treat., 57 (2016) 21925–21938.
  13. M. Gagol, A. Przyjazny, G. Boczkaj, Wastewater treatment by means of advanced oxidation processes based on cavitation – a review, Chem. Eng. J., 338 (2018) 599–627.
  14. G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett., 17 (2019) 145–155.
  15. K. Vijayaraghavan, R. Balasubramanian, Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions, J. Environ. Manage., 160 (2015) 283–296.
  16. G. Crini, E. Lichtfouse, L.D. Wilson, N. Morin‑Crini, Conventional and non‑conventional adsorbents for wastewater treatment, Environ. Chem. Lett., 17 (2019) 195–213.
  17. S.A. Mousavi, A. Almasi, F. Navazeshkh, F. Falahi, Biosorption of lead from aqueous solutions by algae biomass: optimization and modeling, Desal. Water Treat., 148 (2019) 229–237.
  18. M. Moyo, V.E. Pakade, S.J. Modise, Biosorption of lead(II) by chemically modified Mangifera indica seed shells: Adsorbent preparation, characterization and performance assessment, Process Saf. Environ. Prot., 111 (2017) 40–51.
  19. M.K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J., 308 (2017) 438–462.
  20. A.B. Rakhym, G.A. Seilkhanova, T.S. Kurmanbayeva, Adsorption of lead(II) ions from water solutions with natural zeolite and chamotte clay, Mater. Today:. Proc., 31 (2020) 482–485.
  21. L.A. Romero-Cano, H. García-Rosero, L.V. Gonzalez-Gutierrez, L.A. Baldenegro-Pérez, F. Carrasco-Marín, Functionalized adsorbents prepared from fruit peels: equilibrium, kinetic and thermodynamic studies for copper adsorption in aqueous solution, J. Cleaner Prod., 162 (2017) 195–204.
  22. E. Dana, Adsorption of heavy metals on functionalizedmesoporous silica: a review, Microporous Mesoporous Mater., 247 (2017) 145–157.
  23. N. Malik, P. Kumar, S. Shrivastava, S.B. Ghosh, An overview on PET waste recycling for application in packaging, Int. J. Plast. Technol., 21 (2017) 1–24.
  24. M. Frigione, Recycling of PET bottles as fine aggregate in concrete, Waste Manage., 30 (2010) 1101–1106.
  25. K. Choudhary, K.S. Sangwan, D. Goyal, Environment and economic impacts assessment of PET waste recycling with conventional and renewable sources of energy, Procedia CIRP, 80 (2019) 422–427.
  26. E.-K. Guechi, O. Hamdaoui, Biosorption of methylene blue from aqueous solution by potato (Solanum tuberosum) peel: equilibrium modelling, kinetic, and thermodynamic studies, Desal. Water Treat., 57 (2016) 10270–10285.
  27. S. Rangabhashiyam, N. Anu, M.S. Nandagopal Giri, N. Selvaraju, Relevance of isotherm models in biosorption of pollutants by agricultural by-products, J. Environ. Chem. Eng., 2 (2014) 398–414.
  28. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  29. W.H. Cheung, Y.S. Szeto, G. McKay, Intra-particle diffusion processes during acid dye adsorption onto chitosan, Bioresour. Technol., 98 (2007) 2897–2904.
  30. Y. Niu, K. Li, D. Ying, Y. Wang, J. Jia, Novel recyclable adsorbent for the removal of copper(II) and lead(II) from aqueous solution, Bioresour. Technol., 229 (2017) 63–68.
  31. S. Afroze, T.K. Sen, A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents, Water Air Soil Pollut., 229 (2018) 225.
  32. Y. Chu, S. Zhu, M. Xia, F. Wang, W. Lei, Methioninemontmorillonite composite – a novel material for efficient adsorption of lead ions, Adv. Power Technol., 31 (2020) 708–711.
  33. A.M. Iglesias, J.M. Cruz, A. Moldes, B. Perez-Cid, Efficient adsorption of lead ions onto alginate-grape marc hybrid beads: optimization and bioadsorption kinetics, Environ. Model. Assess., 25 (2020) 677–687.
  34. C. Basar, Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot, J. Hazard. Mater., 135 (2006) 232–241.
  35. M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models: a review, J. Hazard. Mater., 393 (2020) 122383, doi: 10.1016/j. jhazmat.2020.122383.
  36. M.A. Fawzy, Biosorption of copper ions from aqueous solution by Codium vermilara: optimization, kinetic, isotherm and thermodynamic studies, Adv. Power Technol., 31 (2020) 3724–3735.
  37. M. Schwaab, E. Steffani, E. Barbosa-Coutinho, J.B. Severo Junior, Critical analysis of adsorption/diffusion modelling as a function of time square root, Chem. Eng. Sci., 173 (2017) 179–186.
  38. S. Tang, L. Lin, X. Wang, A. Feng, A. Yu, Pb(II) uptake onto nylon microplastics: interaction mechanism and adsorption performance, J. Hazard. Mater., 386 (2020) 121960, doi: 10.1016/j. jhazmat.2019.121960.
  39. K.R. Kalash, H.A. Alalwan, M.H. Al-Furaiji, A.H. Alminshid, B.I. Waisi, Isothermal and kinetic studies of the adsorption removal of Pb(II), Cu(II), and Ni(II) ions from aqueous solutions using modified Chara sp. algae, Korean Chem. Eng. Res., 58 (2020) 301–306.
  40. F. Alakhras, H. Al-Shahrani, E. Al-Abbad, F. Al-Rimawi, N. Ouerfelli, Removal of Pb(II) metal ions from aqueous solutions using chitosan-vanillin derivatives of chelating polymers, Pol. J. Environ. Stud., 28 (2019) 1523–1534.
  41. Y. Cai, X. Li, D. Liu, C. Xu, Y. Ai, X. Sun, M. Zhang, Y. Gao, Y. Zhang, T. Yang, J. Wang, L. Wang, X. Li, H. You, A novel Pb-resistant Bacillus subtilis bacterium isolate for co-biosorption of hazardous Sb(III) and Pb(II): thermodynamics and application strategy, Int. J. Environ. Res. Public Health, 15 (2018) 702.
  42. P. Loganathan, W.G. Shim, D.P. Sounthararajah, M. Kalaruban, T. Nur, S. Vigneswaran, Modelling equilibrium adsorption of single, binary, and ternary combinations of Cu, Pb, and Zn onto granular activated carbon, Environ. Sci. Pollut. Res., 25 (2018) 16664–16675.
  43. Z. Ahmad, B. Gao, A. Mosa, H. Yu, X. Yin, A. Bashir, H. Ghoveisi, S. Wang, Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass, J. Cleaner Prod., 180 (2018) 437–449.
  44. S. Gu, L. Wang, X. Mao, L. Yang, C. Wang, Selective adsorption of Pb(II) from aqueous solution by triethylenetetraminegrafted polyacrylamide/vermiculite, Materials, 11 (2018) 514, doi: 10.3390/ma11040514.
  45. Y. Xia, T. Yang, N. Zhu, D. Li, Z. Chen, Q. Lang, Z. Liu, W. Jiao, Enhanced adsorption of Pb(II) onto modified hydrochar: modeling and mechanism analysis, Bioresour. Technol., 288 (2019) 121593, doi: 10.1016/j.biortech.2019.121593.