References

  1. J. Duffie, W. Beckman, Solar Engineering for Thermal Processes, 4th ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2013.
  2. J. Boland, Time Series Modelling of Solar Radiation, V. Badescu, Ed., Modelling Solar Radiation at the Earth’s Surface, Springer- Verlag, Berlin, Heidelberg, 2008, pp. 283–312.
  3. B. Nguyen, V. Hoang, The Study of Direct Solar Radiation Data in the Project of Mapping the Solar Resource and Potential in Vietnam, The 5th International Conference on Sustainable Energy, Ho Chi Minh City, Vietnam, 2017.
  4. C. Fernandez-Peruchena, L. Ramirez, I. Pagola, M. Gaston, Assessment of Models for Estimation of Hourly Irradiation Series from Monthly Mean Values, 15th SolarPACES Conference, Berlin, Germany, pp.121–126.
  5. K. Brecl, M. Topič, Development of a stochastic hourly solar irradiation model, Int. J. Photoenergy, 2014 (2014) 376504, doi: 10.1155/2014/376504.
  6. J.M. Bright, C.J. Smith, P.G. Taylor, R. Crook, Stochastic generation of synthetic minutely irradiance time series derived from mean hourly weather observation data, Sol. Energy, 115 (2015) 229–242.
  7. M. Hofmann, S. Riechelmann, C. Crisosto, R. Mubarak, G. Seckmeyer, Improved synthesis of global irradiance with one-minute resolution for PV system simulations, Int. J. Photoenergy, 2014 (2014) 808509, doi: 10.1155/2014/808509.
  8. T. Soubdhan, R. Emilion, Stochastic Differential Equation for Modeling Global Solar Radiation Sequences. Modelling, Identification, and Control, GOSIER, France, 2010, doi: 10.2316/P.2010.702-099.
  9. L. Magnano, J.W. Boland, R.J. Hyndman, Generation of synthetic sequences of half-hourly temperatures, Environmetrics, 19 (2008) 818–835.
  10. L. Mora-Lopez, A New Procedure to Generate Solar Radiation Time Series from Machine Learning Theory, V. Badescu, Ed., Modelling Solar Radiation at the Earth’s Surface, Springer- Verlag, Berlin, Heidelberg, 2008, pp. 313–326.
  11. T. Gafurov, J. Usaola, M. Prodanovic, Incorporating spatial correlation into stochastic generation of solar radiation data, Sol. Energy, 115 (2015) 74–84.
  12. W.I. Hammed, B.A. Sawadi, S.J. Al-Kamil, M.S. Al-Radhi, Y.I.A. Al-Yasir, A.L. Saleh, R.A. Abd-Alhameed, Prediction of solar irradiance based on artificial neural networks, Inventions, 4 (2019) 45, doi: 10.3390/inventions40300045.
  13. M. Vakili, S. Sabbagh-Yazdi, K. Kalhor, S. Khosrojerdi, Using artificial neural networks for prediction of global solar radiation in Tehran considering particulate matter air pollution, Energy Procedia, 74 (2015) 1205–1212.
  14. S.S. Priya, M.H. Iqbal, Solar radiation prediction using artificial neural networks, Int. J. Comput. Appl., 116 (2015) 28–31.
  15. F.S. Tymvios, S.Chr. Michaelides, C.S. Skouteli, Estimation of Surface Solar Radiation with Artificial Neural Networks, V. Badescu, Ed., Modelling Solar Radiation at the Earth’s Surface, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 221–246.
  16. A. Sfetsos, A.H. Coonick, Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques, Sol. Energy, 68 (2000) 169–178.
  17. W. Ji, K.C. Chee, Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN, Sol. Energy, 85 (2011) 808–817.
  18. L. Mora-López, J. Mora, R. Morales-Bueno, M. Sidrach-de- Cardona, Modeling time series of climatic parameters with probabilistic finite automata, Environ. Modell. Software, 20 (2005) 753–760.
  19. R.J. Aguiar, M. Collares-Pereira, J.P. Conde, Simple procedure for generating sequences of daily radiation values using a library of Markov transition matrices, Sol. Energy, 40 (1988) 269–279.
  20. V.A. Graham, K.G.T. Hollands, A method to generate synthetic hourly solar radiation globally, Sol. Energy, 44 (1990) 333–341.
  21. C. Mustacchi, V. Cena, M. Rocchi, M. Stochastic simulation of hourly global radiation sequences, Sol. Energy, 23 (1979) 47–51.
  22. B. Nguyen, T. Pryor, Generating Artificial Weather Date Sequences for Australian Conditions, The 34th Annual Conference of ANZSES – Solar’96: Energy for Life, Darwin, Australia, pp. 101–108.
  23. SOLCAST, Free Access to Solar Irradiance Data for Non- Commercial Research Use. Available at: https://articles.solcast. com.au/en/articles/2404457-free-access-to-solar-irradiancedata- for-non-commercial-research-use
  24. HOMER Energy LLC., Hybrid Optimization of Multiple Energy Resources, Ver 3.14.0. HOMER Energy, Boulder, CO, USA, 2020.
  25. B. Nguyen, The Mathematical Model of Basin-Type Solar Distillation Systems, Distillation - Modelling, Simulation and Optimization, Vilmar Steffen, IntechOpen, 2019, doi: 10.5772/ intechopen.83228. Available at: https://www.intechopen.com/ books/distillation-modelling-simulation-and-optimization/themathematical- model-of-basin-type-solar-distillation-systems
  26. National Center for Hydro-Meteorogical Forecasting. Available at: http://www.nchmf.gov.vn