References

  1. Z.X. Wang, X.N. Lin, N. Tong, Z.T. Li, S.T. Sun, C. Liu, Optimal planning of a 100% renewable energy island supply system based on the integration of a concentrating solar power plant and desalination units, Int. J. Electr. Power Energy Syst., 117 (2020) 105707, doi: 10.1016/j.ijepes.2019.105707.
  2. Y.P. Hua, M. Oliphant, E.J. Hu, Development of renewable energy in Australia and China: a comparison of policies and status, Renewable Energy, 85 (2016) 1044–1051.
  3. R. Hastik, S. Basso, C. Geitner, C. Haida, A. Poljanec, A. Portaccio, B. Vrščaj, C. Walzer, Renewable energies and ecosystem service impacts, Renewable Sustainable Energy Rev., 48 (2015) 608–623.
  4. K. Shivarama Krishna, K. Sathish Kumar, A review on hybrid renewable energy systems, Renewable Sustainable Energy Rev., 52 (2015) 907–916.
  5. S. Li, L. Gao, H.G. Jin, Life cycle energy use and GHG emission assessment of coal-based SNG and power cogeneration technology in China, Energy Convers. Manage., 112 (2016) 91–100.
  6. A. Khalilnejad, G.H. Riahy, A hybrid wind-PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer, Energy Convers. Manage., 80 (2014) 398–406.
  7. M. Gökçek, Ö.B. Gökçek, Technical and economic evaluation of freshwater production from a wind-powered small-scale seawater reverse osmosis system (WP-SWRO), Desalination, 381 (2016) 47–57.
  8. N. Ghaffour, J. Bundschuh, H. Mahmoudi, M.F.A. Goosen, Renewable energy-driven desalination technologies: a comprehensive review on challenges and potential applications of integrated systems, Desalination, 356 (2015) 94–114.
  9. C. Gopal, M. Mohanraj, P. Chandramohan, P. Chandrasekar, Renewable energy source water pumping systems—a literature review, Renewable Sustainable Energy Rev., 25 (2013) 351–370.
  10. W.X. Peng, A. Maleki, M.A. Rosen, P. Azarikhah, Optimization of a hybrid system for solar-wind-based water desalination by reverse osmosis: comparison of approaches, Desalination, 442 (2018) 16–31.
  11. B. Zhou, B. Liu, D.S. Yang, J. Cao, T. Littler, Multi-objective optimal operation of coastal hydro-electrical energy system with seawater reverse osmosis desalination based on constrained NSGA-III, Energy Convers. Manage., 207 (2020) 112533, doi: 10.1016/j.enconman.2020.112533.
  12. H. Mehrjerdi, Modeling and optimization of an island water-energy nexus powered by a hybrid solar-wind renewable system, Energy, 197 (2020) 117217, doi: 10.1016/j. energy.2020.117217.
  13. A. Maleki, M.G. Khajeh, M.A. Rosen, Weather forecasting for optimization of a hybrid solar-wind–powered reverse osmosis water desalination system using a novel optimizer approach, Energy, 114 (2016) 1120–1134.
  14. G.Z. Zhang, B.J. Wu, A. Maleki, W.P. Zhang, Simulated annealing-chaotic search algorithm based optimization of reverse osmosis hybrid desalination system driven by wind and solar energies, Sol. Energy, 173 (2018) 964–975.
  15. R. Xavier, S. Bruno, N.D. Trung, B. Jamel, Optimal system management of a water pumping and desalination process supplied with intermittent renewable sources, IFAC Proc. Volumes, 45 (2012) 369–374.
  16. H. Cherif, J. Belhadj, Chapter 15 – Environmental Life Cycle Analysis of Water Desalination Processes, V.G. Gude, Ed., Sustainable Desalination Handbook: Plant Selection, Design and Implementation, Elsevier, Butterworth-Heinemann, Woburn, MA, 2018, pp. 527–559. https://doi.org/10.1016/ b978-0-12-809240-8.00015-0.
  17. M.T. Mito, X.H. Ma, H. Albuflasa, P.A. Davies, Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: state of the art and challenges for large-scale implementation, Renewable Sustainable Energy Rev., 112 (2019) 669–685.
  18. S. Miller, H. Shemer, R. Semiat, Energy and environmental issues in desalination, Desalination, 366 (2015) 2–8.
  19. A. Malekia, A. Askarzadeh, Comparative study of artificial intelligence techniques for sizing of a hydrogen-based standalone photovoltaic/wind hybrid system, Int. J. Hydrogen Energy, 39 (2014) 9973–9984. https://doi.org/10.1016/B978-0-12- 374501-9.X0001-5.
  20. A.K. Soteris, Solar Energy Engineering: Processes and Systems, Elsevier, Burlington, 2009.
  21. A. Hysa, Modeling and simulation of the photovoltaic cells for different values of physical and environmental parameters, Emerging Sci. J., 3 (2019) 395–406.
  22. T.M. Layadi, G. Champenois, M. Mostefai, Modeling and design optimization of an autonomous multisource system under a permanent power-supply constraint, IEEE Trans. Sustainable Energy, 6 (2015) 872–880.
  23. Grundfos-WinCAPS Software, 2017. Available at: https://www. industrialgines.com/en/wincaps-7-43-grundfos/
  24. FilmTec releases ROSA Version 6.0, Membr. Technol., 2004 (2004) 3, doi: 10.1016/S0958-2118(04)00252-6.
  25. B. Guezuraga, R. Zauner, W. Pölz, Life cycle assessment of two different 2 MW class wind turbines, Renewable Energy, 37 (2012) 37–44.
  26. J.Q. Peng, L. Lu, H.X. Yang, Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems, Renewable Sustainable Energy Rev., 19 (2013) 255–274.
  27. H. Cherif, G. Champenois, J. Belhadj, Environmental life cycle analysis of a water pumping and desalination process powered by intermittent renewable energy sources, Renewable Sustainable Energy Rev., 59 (2016) 1504–1513.
  28. D. Abbes, A. Martinez, G. Champenois, Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems, Math. Comput. Simul., 98 (2014) 46–62.
  29. Metrological Data from a Tunisian Site. Available at: http:// www.meteo.tn
  30. H.R. El-Hana Bouchekara, M.S. Javaid, Y.A. Shaaban, M.S. Shahriar, M.A.M. Ramli, Y. Latreche, Decomposition based multiobjective evolutionary algorithm for PV/wind/Diesel Hybrid Microgrid System design considering load uncertainty, Energy Rep., 7 (2021) 52–69.