References

  1. C.P. Kasanke, M.B. Leigh, Factors limiting sulfolane biodegradation in contaminated subarctic aquifer substrate, PLoS One, 12 (2017) e0181462.
  2. A. Gutiérrez, M. Atilhan, S. Aparicio, A nanoscopic approach on benzene-toluene-xylenes extraction by sulfolane, J. Mol. Liq., 249 (2018) 1039–1046.
  3. R. Saint-Fort, Sulfolane attenuation by surface and subsurface soil matrices, J. Environ. Sci. Health., Part A, 41 (2006) 1211–1231.
  4. E.A. Greene, P.M. Fedorak, Nutrient stimulation of sulfolane biodegradation in a contaminated soil from a sour natural gas plant and in a pristine soil, Environ. Technol., 22 (2001) 619–629.
  5. K. Potter, S. Roe, J. Hill, Canadian Environmental Quality Guidelines for Sulfolane: Water and Soil, Canadian Council of Minister of the Environment Publications, Canada, 2006.
  6. M.F. Khan, L. Yu, G. Achari, J.H. Tay, Degradation of sulfolane in aqueous media by integrating activated sludge and advanced oxidation process, Chemosphere, 222 (2019) 1–8.
  7. C.F. Yang, S.H. Liu, Y.M. Su, Y.R. Chen, C.W. Lin, and K.L. Lin, Bioremediation capability evaluation of benzene and sulfolane contaminated groundwater: determination of bioremediation parameters, Sci. Total Environ., 648 (2019) 811–818.
  8. V. Agatonovic, E. Vaisman, Sulfolane Impacted Soil and Groundwater Treatability Study, Environmental Services Association of Alberta, Edmonton, AB (Canada), 2005, pp. 1–11.
  9. L. Yu, M. Mehrabani-Zeinabad, G. Achari, C.H. Langford, Application of UV based advanced oxidation to treat sulfolane in an aqueous medium, Chemosphere, 160 (2016) 155–161.
  10. M. Izadifard, G. Achari, C.H. Langford, Degradation of sulfolane using activated persulfate with UV and UV-ozone, Water Res., 125 (2017) 325–331.
  11. L. Yu, G. Achari, C.H. Langford, I. Keir, A Feasibility Study on Sulfolane Degradation in Groundwater using Neutral Fenton Catalysts, CSCE, Canada, 2016, June 1–4.
  12. M. Brandão, L. Yu, C. Garcia, G. Achari, Advanced oxidation based treatment of soil wash water contaminated with sulfolane, Water, 11 (2019) 2152.
  13. S.J. Ye, M. Yan, X.F. Tan, J. Liang, G.M. Zeng, H.P. Wu, B. Song, C.Y. Zhou, H. Wang, Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light, Appl. Catal., B, 250 (2019) 78–88.
  14. S.J. Ye, G.M. Zeng, X.F. Tan, H.P. Wu, J. Liang, B. Song, N. Tang, P. Zhang, Y.Y. Tang, Q. Chen, X.P. Li, Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer, Appl. Catal., B, 269 (2020) 118850.
  15. S.H. Liang, C.M. Kao, Y.C. Kuo, K.F. Chen, B.M. Yang, In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system, Water Res., 45 (2011) 2496–2506.
  16. R.C. Pepino Minetti, H.R. Macaño, J. Britch, M. Carla Allende, In situ chemical oxidation of BTEX and MTBE by ferrate: pH dependence and stability, J. Hazard. Mater., 324 (2017) 448–456.
  17. C. Su, W. Li, Y. Lu, M. Chen, Z. Huang, Effect of heterogeneous Fenton-like pre-treatment on anaerobic granular sludge performance and microbial community for the treatment of traditional Chinese medicine wastewater, J. Hazard. Mater., 314 (2016) 51–58.
  18. M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, and Y. Liu, Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review, Chem. Eng. J., 284 (2016) 582–598.
  19. Y. Liu, A. Zhou, Y. Gan, and X. Li, Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene, J. Hazard. Mater., 308 (2016) 187–191.
  20. A. Santos, S. Rodríguez, F. Pardo, A. Romero, Use of Fenton reagent combined with humic acids for the removal of PFOA from contaminated water, Sci. Total Environ., 563–564 (2016) 657–663.
  21. J. Xu, X. Fan, F. Huang, X. Li, Iron bound to soil organic matter catalyzes H2O2 to oxidize crude oil in soil, J. Hazard. Mater., 322 (2017) 516–524.
  22. W.O. Medjor, O.N. Namessan, E.A. Medjor, Optimization, kinetics, physicochemical and ecotoxicity studies of Fenton oxidative remediation of hydrocarbons contaminated groundwater, Egyptian J. Petro., 27 (2018) 227–233.
  23. M. Cheng, G. Zeng, D. Huang, C. Lai, P. Xu, C. Zhang, Y. Liu, J. Wan, X. Gong, Y. Zhu, Degradation of atrazine by a novel Fenton-like process and assessment the influence on the treated soil, J. Hazard. Mater., 312 (2016) 184–191.
  24. J.C. Yoo, C. Lee, J.S. Lee, K. Baek, Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals, J. Environ. Manage., 186 (2017) 314–319.
  25. NIEA W521.52A, Methods for Groundwater Sampling and Hydrological Tests, Taiwan Enviro. Prot. Admin., Taiwan, 2017.
  26. R. Baciocchi, M.R. Boni, L. D’Aprile, Application of H2O2 lifetime as an indicator of TCE Fenton-like oxidation in soils, J. Hazard. Mater., 107 (2004) 97–102.
  27. X. B. Gong, Remediation of weathered petroleum oilcontaminated soil using a combination of biostimulation and modified Fenton oxidation, Int. Biodeterior. Biodegrad., 70 (2012) 89–95.
  28. K. Choi, S. Bae, W. Lee, Degradation of pyrene in cetylpyridinium chloride-aided soil washing wastewater by pyrite Fenton reaction, Chem. Eng. J., 249 (2014) 34–41.
  29. K. Ayoub, E.D. van Hullebusch, M. Cassir, A. Bermond, Application of advanced oxidation processes for TNT removal: Aa review., J. Hazard. Mater., 178 (2010) 10–28.
  30. M. Munoz, Z.M. de Pedro, J.A. Casas, and J.J. Rodriguez, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – a review, Appl. Catal., B, 176–177 (2015) 249–265.
  31. N. Wang, T. Zheng, G. Zhang, P. Wang, A review on Fenton-like processes for organic wastewater treatment, J. Environ. Chem. Eng., 4 (2016) 762–787.
  32. M. Ahmad, M.A. Simon, A. Sherrin, M.E. Tuccillo, J.L. Ullman, A.L. Teel, R.J. Watts, Treatment of polychlorinated biphenyls in two surface soils using catalyzed H2O2 propagations, Chemosphere, 84 (2011) 855–862.
  33. AL-T. Pham, F.M. Doyle, D.L. Sedlak, Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials, Water Res., 46 (2012) 6454–6462.
  34. A.D. Bokare, and W. Choi, Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes, J. Hazard. Mater., 275 (2014) 121–135.
  35. M. Vallejo, P. Fernández-Castro, M.F. San Román, and I. Ortiz, Assessment of PCDD/Fs formation in the Fenton oxidation of 2-chlorophenol: influence of the iron dose applied, Chemosphere, 137 (2015) 135–141.
  36. N. Chen, G. Fang, D. Zhou, J. Gao, Effects of clay minerals on diethyl phthalate degradation in Fenton reactions, Chemosphere, 165 (2016) 52–58.
  37. C. Sandu, M. Popescu, E. Rosales, E. Bocos, M. Pazos, G. Lazar, M.A. Sanromán, Electrokinetic-Fenton technology for the remediation of hydrocarbons historically polluted sites, Chemosphere, 156 (2016) 347–356.
  38. J.P. Simonin, On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics, Chem. Eng. J., 300 (2016) 254–263.
  39. S.R. Pouran, A.A. Abdul Raman, W.M.A. Wan Daud, Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions, J. Cleaner Prod., 64 (2014) 24–35.