References

  1. N. Abdullah, Z. Ujang, A. Yahya, Aerobic granular sludge formation for high strength agro-based wastewater treatment, Bioresour. Technol., 102 (2011) 6778–6781.
  2. S. Wang, X.X. Ma, Y.Y. Wang, G.C. Du, J.-H. Tay, J. Li, Piggery wastewater treatment by aerobic granular sludge: granulation process and antibiotics and antibiotic-resistant bacteria removal and transport, Bioresour. Technol., 273 (2019) 350–357.
  3. B. Arrojo, A. Mosquera-Corral, J.M. Garrido, R. Méndez, Aerobic granulation with industrial wastewater in sequencing batch reactors, Water Res., 38 (2004) 3389–3399.
  4. Y. Yuan, J.J. Liu, B. Ma, Y. Liu, B. Wang, Y.Z. Peng, Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR), Bioresour. Technol., 222 (2016) 326–334.
  5. S. Sguanci, C. Lubello, S. Caffaz, T. Lotti, Long-term stability of aerobic granular sludge for the treatment of very lowstrength real domestic wastewater, J. Cleaner Prod., 222 (2019) 882–890.
  6. M. Pronk, M.K. de Kreuk, B. de Bruin, P. Kamminga, R. Kleerebezem, M.C.M. van Loosdrecht, Full scale performance of the aerobic granular sludge process for sewage treatment, Water Res., 84 (2015) 207–217.
  7. S.J. Sarma, J.H. Tay, Aerobic granulation for future wastewater treatment technology: challenges ahead, Environ. Sci. Water Res. Technol., 4 (2018) 9–15.
  8. B. Ni, W. Xie, S. Liu, H. Yu, Y. Wang, G. Wang, X. Dai, Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater, Water Res., 43 (2009) 751–761.
  9. S.J. Sarma, J.H. Tay, A. Chu, Finding knowledge gaps in aerobic granulation technology, Trends Biotechnol., 35 (2017) 66–78.
  10. N.A. Awang, M.G. Shaaban, Effect of reactor height/diameter ratio and organic loading rate on formation of aerobic granular sludge in sewage treatment, Int. Biodeterior. Biodegrad., 112 (2016) 1–11.
  11. M.K. Jungles, J.L. Campos, R.H.R. Costa, Sequencing batch reactor operation for treating wastewater with aerobic granular sludge, Braz. J. Chem. Eng., 31 (2014) 27–33.
  12. M. Pijuan, U. Werner, Z. Yuan, Reducing the startup time of aerobic granular sludge reactors through seeding floccular sludge with crushed aerobic granules, Water Res., 45 (2011) 5075–5083.
  13. L.L. Hu, J.L. Wang, X.H. Wen, Q. Yi, The formation and characteristics of aerobic granules in sequencing batch reactor (SBR) by seeding anaerobic granules, Process Biochem., 40 (2005) 5–11.
  14. APHA/AWWA/WEF, Standard Methods for the Examination of Water and Wastewater, 2012.
  15. F.A. Dahalan, Development and Characterization of Phototrophic Aerobic Granular Sludge, Universiti Teknologi Malaysia, 2011.
  16. M.H. Ab Halim, Development of Aerobic Granules in Sequencing Batch Reactor System for Treating High Temperature Domestic Wastewater, Universiti Teknologi Malaysia, 2018.
  17. M.H. Ab Halim, A. Nor Anuar, N.S. Abdul Jamal, S.I. Azmi, Z. Ujang, M.M. Bob, Influence of high temperature on the performance of aerobic granular sludge in biological treatment of wastewater, J. Environ. Manage., 184 (2016) 271–280.
  18. N.H. Rosman, A. Nor Anuar, I. Othman, H. Harun, M.Z. Sulong, S.H. Elias, M.A.H. Mat Hassan, S. Chelliapan, Z. Ujang, Cultivation of aerobic granular sludge for rubber wastewater treatment, Bioresour. Technol., 129 (2013) 620–623.
  19. A. Gonzalez-Martinez, B. Muñoz-Palazon, A. Rodriguez- Sanchez, P. Maza-Márquez, A. Mikola, J. Gonzalez-Lopez, R. Vahala, Start-up and operation of an aerobic granular sludge system under low working temperature inoculated with cold-adapted activated sludge from Finland, Bioresour. Technol., 239 (2017) 180–189.
  20. H. Zhang, F. Dong, T. Jiang, Y. Wei, T. Wang, F. Yang, Aerobic granulation with low strength wastewater at low aeration rate in A/O/A SBR reactor, Enzyme Microb. Technol., 49 (2011) 215–222.
  21. N. Abdullah, Development and Microbial Characterization of Aerobic Granulation using Palm Oil Mill Effluent (POME), 2012.
  22. B.X. Thanh, C. Visvanathan, R. Ben Aim, Characterization of aerobic granular sludge at various organic loading rates, Process Biochem., 44 (2009) 5113.
  23. C. Meunier, O. Henriet, B. Schoonbroodt, J. Boeur, J. Mahillon, P. Henry, Influence of feeding pattern and hydraulic selection pressure to control filamentous bulking in biological treatment of dairy wastewaters, Bioresour. Technol., 221 (2016) 300–309.
  24. G. Xu, X. Xu, F. Yang, S. Liu, Selective inhibition of nitrite oxidation by chlorate dosing in aerobic granules, J. Hazard. Mater., 185 (2011) 249–254.
  25. V. Agridiotis, C.F. Forster, Addition of Al and Fe salts during treatment of paper mill effluents to improve activated sludge settlement characteristics, Bioresour. Technol., 98 (2007) 2926–2934.
  26. T. Ren, L. Liu, G. Sheng, X. Liu, H. Yu, M. Zhang, J. Zhu, Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity, Water Res., 42 (2008) 3343–3352.
  27. Y. Lv, C. Wan, D.J. Lee, X. Liu, J.H. Tay, Microbial communities of aerobic granules: granulation mechanisms, Bioresour. Technol., 169 (2014) 344–351.
  28. L. Liu, Z. Zeng, M. Bee, V. Gibson, L. Wei, X. Huang, C. Liu, Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor, J. Hazard. Mater., 349 (2018) 135–142.
  29. B. Zhang, P.N.L. Lens, W. Shi, R. Zhang, Z. Zhang, Y. Guo, X. Bao, F. Cui, Enhancement of aerobic granulation and nutrient removal by an algal–bacterial consortium in a lab-scale photobioreactor, Chem. Eng. J., 334 (2018) 2373–2382.
  30. C. Thorup, A. Schramm, L. Schreiber, A.J. Findlay, K.W. Finster, Disguised as a sulfate reducer : growth of the deltaproteobacterium desulfurivibrio alkaliphilus by sulfide oxidation with nitrate, Am. Soc. Microbiol., 8 (2017) 1–9.
  31. W. Zeng, A. Wang, J. Zhang, L. Zhang, Y. Peng, Enhanced biological phosphate removal from wastewater and clade-level population dynamics of “Candidatus Accumulibacter phosphatis” under free nitrous acid inhibition: linked with detoxication, Chem. Eng. J., 296 (2016) 234–242.
  32. L.J. Heung, C. Luberto, M. Del Poeta, Role of sphingolipids in microbial pathogenesis, Infect. Immun., 74 (2006) 28–39.
  33. S.K. Hargreaves, R.J. Williams, K.S. Hofmockel, Environmental filtering of microbial communities in agricultural soil shifts with crop growth, PLoS One, 10 (2015) 1–14.
  34. M. Ruan, B. Liang, S. Maurice, L. Zhou, L. Wang, J. Liu, J. Gu, B. Mu, Molecular diversity of bacterial bam A gene involved in anaerobic degradation of aromatic hydrocarbons in mesophilic petroleum reservoirs, Int. Biodeterior. Biodegrad., 114 (2016) 122–128.
  35. C. Chen, J. Ming, B.A. Yoza, J. Liang, Q.X. Li, H. Guo, Characterization of aerobic granular sludge used for the treatment of petroleum wastewater, Bioresour. Technol., 271 (2019) 353–359.
  36. L.M. Silva-bedoya, M.S. Sánchez-Pinzón, G.E. Cadavid- Restrepo, C.X. Moreno-Herrera, Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms, Microbiol. Res., 192 (2016) 313–325.
  37. I. Brook, Other Clostridium Species, in: Princ. Pract. Pediatr. Infect. Dis., 4th ed., 2012, pp. 979–982.
  38. J. Liu, J. Li, X. Wang, Q. Zhang, H. Littleton, Rapid aerobic granulation in an SBR treating piggery wastewater by seeding sludge from a municipal WWTP, J. Environ. Sci. (China), 51 (2017) 332–341.
  39. Q. Wang, R. Yao, Q. Yuan, H. Gong, H. Xu, N. Ali, Z. Jin, J. Zuo, K. Wang, Aerobic granules cultivated with simultaneous feeding/draw mode and low- strength wastewater: performance and bacterial community analysis, Bioresour. Technol., 261 (2018) 232–239.
  40. Y.V. Nancharaiah, G. Kiran Kumar Reddy, Aerobic granular sludge technology: mechanisms of granulation and biotechnological applications, Bioresour. Technol., 247 (2017) 1–16.
  41. A.J. Kang, Q. Yuan, Long-term stability and nutrient removal efficiency of aerobic granules at low organic loads, Bioresour. Technol., 234 (2017) 336–342.