References

  1. S. Xu, Y. Liu, Y. Yu, X. Zhang, J. Zhang, Y. Li, PAN/PVDF chelating membrane for simultaneous removal of heavy metal and organic pollutants from mimic industrial wastewater, Sep. Purif. Technol., 235 (2020) 2–9, doi: 10.1016/j. seppur.2019.116185.
  2. J.H. Park, Y.S. Ok, S.H. Kim, J.S. Cho, J.S. Heo, R.D. Delaune, D.C. Seo, Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions, Chemosphere, 142 (2016) 77–83.
  3. V.K. Gupta, M. Al Khayat, A.K. Singh, M.K. Pal, Nano level detection of Cd(II) using poly(vinyl chloride) based membranes of Schiff bases, Anal. Chim. Acta, 634 (2009) 36–43.
  4. N. Madima, S.B. Mishra, I. Inamuddin, A.K. Mishra, Carbonbased nanomaterials for remediation of organic and inorganic pollutants from wastewater. A review, Environ. Chem. Lett., 18 (2020) 1169–1191.
  5. J. Lehmann, S. Joseph, S. Joseph, Biochar for Environmental Management, 2nd ed., Taylor & Francis, London, 2015.
  6. EBC (2012) ‘European Biochar Certificate - Guidelines for a Sustainable Production of Biochar’, European Biochar Foundation (EBC), Version 61, Arbaz, Switzerland, 2015, pp. 1–22.
  7. H. Marsh, F. Rodríguez-Reinoso, Activated Carbon, Elsevier Ltd., Amsterdam, The Netherlands, 2006.
  8. M. Smisek, S. Cerny, Activated Carbon, In: Topics in Organic and General Chemistry, Elsevier Co., New York, USA, 1970, pp. 93–123.
  9. I. Hilber, T.D. Bucheli, Activated carbon amendment to remediate contaminated sediments and soils: a review, Global Nest J., 12 (2010) 305–317.
  10. IBI, Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil, International Biochar Initiative, 2015, 23 p. Available at: http://www.biocharinternational. org/characterizationstandard (accessed July 24, 2020).
  11. N. Hagemann, K. Spokas, H.P. Schmidt, R. Kägi, M.A. Böhler, T.D. Bucheli, Activated carbon, biochar and charcoal: linkages and synergies across pyrogenic carbon’s ABCs, Water (Switzerland), 10 (2018) 6–19, doi: 10.3390/w10020182.
  12. J.J. Schanz, R.H. Parry, The activated carbon industry, Ind. Eng. Chem., 54 (1962) 24–28.
  13. R.A. Smith, On the absorption of gases by charcoal. —No. I, Proc. R. Soc. London, 12 (1863) 424–426.
  14. J. Dewar, Absorption and thermal evolution of gases occluded in charcoal at low temperatures, Am. J. Sci., 4–18 (1904) 295–300.
  15. N. Chaney, The activation of carbon, Trans. Am. Electron. Chem Soc., 91 (1919) 3–6. Available at: https://scholar.google. com/scholar?hl=en&as_sdt=0%2C5&q=Chaney%2C+N.+ The+activation+of+carbon.+Trans.+Am.+Electron.+Chem.+Soc.+ 3_6+1919%2C+91&btnG= (accessed July 24, 2020).
  16. N.K. Chaney, Adsorptive Carbon and Process of Making the Same, U.S. Patent 1497543, 1924. Available at: https:// patentimages.storage.googleapis.com/12/63/66/dc18fe04d 33abc/US1497543.pdf (accessed July 24, 2020).
  17. Metalbank-Co., Zinc Chloride for Activating Charcoal, British Patent 238,889, 1924. Available at: https://patents.google. com/patent/CA1334192C/en (accessed July 24, 2020).
  18. Bayer, Manufacture of Active Charcoal by Briquetting Charcoal Fines and Chemicals under Pressure, British Patents 195,390, 1923. Available at: https://pubs.acs.org/doi/pdf/10.1021/ie50249 a009?src=recsys
  19. E.R. Sutcliffe, Absorbent and decolorising carbons, J. Soc. Chem. Ind., 43 (1924) 635–637.
  20. W.K. Lewis, A.B. Metzner, Engineering, design, and process development section activation of carbons, Ind. Eng. Chem., 46 (1954) 849–858.
  21. W.A. Helbig, Activated carbon, J. Chem. Educ., 23 (1946) 98–102, doi: 10.1021/ed023p98.
  22. W.M. Wright, Oxidations on charcoal, Math. Proc. Cambridge Philos. Soc., 23 (1926) 187–190.
  23. H.H. Lowry, On the nature of active carbon, J. Phys. Chem., 34 (1930) 63–73.
  24. O. Ruff, G. Schmidt, Amorpher kohlenstoff und graphit, Z. Anorg. Allg. Chem., 148 (1925) 313–331.
  25. H.H. Sheldon, Charcoal activation, Phys. Rev., 16 (1920) 165–172.
  26. G. Mezohegyi, F.P. van der Zee, J. Font, A. Fortuny, A. Fabregat, Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon, J. Environ. Manage., 102 (2012) 148–164.
  27. F. Zhao, N. Rahunen, J.R. Varcoe, A. Chandra, C. Avignone- Rossa, A.E. Thumser, R.C.T. Slade, Activated carbon cloth as anode for sulfate removal in a microbial fuel cell, Environ. Sci. Technol., 42 (2008) 4971–4976.
  28. EPA, Fact Sheet: Mercury and Air Toxics Standards for Power Plants, 2011, pp. 1–6. Available at: https://www.epa.gov/ mats/cleaner-power-plants (accessed July 24, 2020).
  29. Grand-View-Research-Group, Activated Carbon Market Size, Share | Global Industry Report, 2019–2025, 2019. Available at: https://www.grandviewresearch.com/industry-analysis/activated-carbon-market (accessed July 24, 2020).
  30. R.C. Bansal, M. Goyal, Activated carbon adsorption, Taylor & Francis, London, 2005.
  31. D. Parajuli, H. Kawakita, K. Inoue, K. Ohto, K. Kajiyama, Persimmon peel gel for the selective recovery of gold, Hydrometallurgy, 87 (2007) 133–139.
  32. B.R.M. Alsehli, A simple approach for determining the maximum sorption capacity of chlorpropham from aqueous solution onto granular activated charcoal, Processes, 8 (2020) 1–16, doi: 10.3390/pr8040398.
  33. D. Duranoğlu, A.W. Trochimczuk, U. Beker, Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer, Chem. Eng. J., 187 (2012) 193–202.
  34. A.A. Khan, R.P. Singh, Adsorption thermodynamics of carbofuran on Sn(IV) arsenosilicate in H+, Na+ and Ca2+ forms, Colloids Surf., 24 (1987) 33–42.
  35. J.W. Biggar, M.W. Cheung, Adsorption of picloram(4-amino-3,5,6-trichloropicolinic acid) on panoche, ephrata, and palouse soils: a thermodynamic approach to the adsorption mechanism, Soil Sci. Soc. Am. J., 37 (1973) 863–868.
  36. W. Huang, J. Chen, F. He, J. Tang, D. Li, Y. Zhu, Y. Zhang, Effective phosphate adsorption by Zr/Al-pillared montmorillonite: insight into equilibrium, kinetics and thermodynamics, Appl. Clay Sci., 104 (2015) 252–260.
  37. M.F. Sawalha, J.R. Peralta-Videa, J. Romero-González, J.L. Gardea-Torresdey, Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: thermodynamic and isotherm studies, J. Colloid Interface Sci., 300 (2006) 100–104.
  38. S. Mandal, S. Tripathy, T. Padhi, M.K. Sahu, R.K. Patel, Removal efficiency of fluoride by novel Mg-Cr-Cl layered double hydroxide by batch process from water, J. Environ. Sci., 25 (2013) 993–1000.
  39. S. Kundu, A.K. Gupta, Investigations on the adsorption efficiency of iron oxide coated cement (IOCC) towards As(V)— kinetics, equilibrium and thermodynamic studies, Colloids Surf., A, 273 (2006) 121–128.
  40. S. Dawood, T.K. Sen, Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design, Water Res., 46 (2012) 1933–1946.
  41. L. Batistella, L.D. Venquiaruto, M. Di Luccio, J.V. Oliveira, S.B.C. Pergher, M.A. Mazutti, D. de Oliveira, A.J. Mossi, H. Treichel, R. Dallago, Evaluation of acid activation under the adsorption capacity of double layered hydroxides of Mg–Al–CO3 type for fluoride removal from aqueous medium, Ind. Eng. Chem. Res., 50 (2011) 6871–6876.
  42. Q. Chang, L. Zhu, Z. Luo, M. Lei, S. Zhang, H. Tang, Sonoassisted preparation of magnetic magnesium–aluminum layered double hydroxides and their application for removing fluoride, Ultrason. Sonochem., 18 (2011) 553–561.
  43. D.P. Das, J. Das, K. Parida, Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcitelike compound (HTlc) towards removal of fluoride from aqueous solution, J. Colloid Interface Sci., 261 (2003) 213–220.
  44. L. Lv, Defluoridation of drinking water by calcined Mg-Al-CO3 layered double hydroxides, Desalination, 208 (2007) 125–133.
  45. W. Ma, N. Zhao, G. Yang, L. Tian, R. Wang, Removal of fluoride ions from aqueous solution by the calcination product of Mg–Al–Fe hydrotalcite-like compound, Desalination, 268 (2011) 20–26.
  46. R. Chang, Physical Chemistry for the Chemical and Biological Sciences, University Science Books, Sausalito-USA, 2001.
  47. R. Chakraborty, A. Asthana, A.K. Singh, B. Jain, A.B.H. Susan, Adsorption of heavy metal ions by various low-cost adsorbents: a review, Int. J. Environ. Anal. Chem., 100 (2020) 1–38, doi: 10.1080/03067319.2020.1722811.
  48. J. Biscoe, B.E. Warren, An X-ray study of carbon black, J. Appl. Phys., 13 (1942) 364–371.
  49. Y.S. Ho, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics, 59 (2004) 171–177.
  50. Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J., 70 (1998) 115–124.
  51. H.P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, 32 (1994) 759–769.
  52. H.P. Boehm, Chemical identification of surface groups, Adv. Catal., 16 (1966) 179–274.
  53. J.W. Patrick, Active carbon, Chem. Eng. J., 40 (1989) 196–197.
  54. W.S. Stoy, M.D. Garret, CARBON BLACK, Pigment, Pt 1 12 (1975) 261–304, doi: 10.1016/b978-0-08-009421-2.50013-5.
  55. J.S. Mattson, H.B. Mark, Activated Carbon, Marcel Dekker, New York, NY, 1971.
  56. H. Jankowska, A. Swiatkowski, J. Choma, Active Carbon, Ellis Horwood, West Sussex, 1991.
  57. K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, John Wiley Sons,New York, NY, London, 1988. Available at: http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471848026.html (accessed July 25, 2020).
  58. M. Smisek, S. Cerny, Active Carbon, Manufacture, Properties and Applications, In: Topics in Inorganic and General Chemistry, Elsevier Publishing Company, 1970. Available at: https://www.amazon.com/Active-Carbon-Manufacture-Properties-Applications/dp/0444407731 (accessed July 25, 2020).
  59. K.D. Linstedt, C.P. Houck, J.T. O’Connor, Trace element removals in advanced wastewater treatment processes., J. Water Pollut. Control Fed., 43 (1971) 1507–1513.
  60. P.N. Cheremisinoff, Y.H. Habib, Cadmium, lead, mercury: a plenary account for water pollution: removal techniques, Water Sewage Works, 7 (1972) 46–51.
  61. S.D. Faust, O.M. Aly, Chemistry of Water Treatment, 1998. Available at: https://books.google.com.sa/books?hl=en&lr= &id=ivLiNH-NjOcC&oi=fnd&pg=PA1&dq=Faust,+S.D. +and+Aly,+O.M.,+Chemistry+of+Water+Treatment,+Che lsia,+M.L.,+Ed.,+Ann+Arbor+Press,+1988&ots=MEAdfU TPgP&sig=R_kzephbZNEN2T8T3hBPBydJLzw&redir_ esc=y#v=onepage&q&f=false (accessed July 25, 2020).
  62. P.N. Cheremisinoff, F. Ellerbusch, Carbon Adsorption Handbook, Ann Arbor Science Publishers, Ann Arbor, MI, 1978.
  63. T.W. Ahmad, T.H. Usmani, Z. Ahmad, Activated carbon from indigenous inferior woods part II. Activation temperature, time and particle size influence, Pak. J. Sci. Ind. Res., 33 (1990) 177–180. Available at: https://agris.fao.org/agrissearch/ search.do?recordID=PK19910001339 (accessed July 26, 2020).
  64. A. Mathur, S.K. Khare, D.C. Rupainwar, Removal of heavy metals from main sewer-water of Varanasi city by adsorption on fly ash and blast furnace slag, J. Ind. Pollut. Control., 5 (1989) 52–57. Available at: https://scholar.google.com/ citations?hl=en&user=sXOu2DIAAAAJ&view_op=list_ works&sortby=pubdate#d=gs_md_cita-d&u=%2Fcitations% 3Fview_op%3Dview_citation%26hl%3Den%26user%3 DsXOu2DIAAAAJ%26sortby%3Dpubdate%26citation_ for_view%3DsXOu2DIAAAAJ%3AMXK_kJrjxJIC%26t (accessed July 26, 2020).
  65. E.M. van der Merwe, L.C. Prinsloo, C.L. Mathebula, H.C. Swart, E. Coetsee, F.J. Doucet, Surface and bulk characterization of an ultrafine South African coal fly ash with reference to polymer applications, Appl. Surf. Sci., 317 (2014) 73–83.
  66. U.I. Gaya, E. Otene, A.H. Abdullah, Adsorption of aqueous Cd(II) and Pb(II) on activated carbon nanopores prepared by chemical activation of doum palm shell, Springerplus, 4 (2015) 1–18.
  67. D.P. Tiwari, K. Promod, A.K. Mishra, R.P. Singh, R.P.S. Srivastav, Removal of toxic metals from electroplating industries (effect of pH on removal by adsorption), Indian J. Environ. Health, 31 (1989) 120–124.
  68. H. Jankowska, J. Choma, W. Burakiewiez-Mortka, A. Swiatkowski, Active Carbon, Ellis Horwood Ltd., London, 1987.
  69. R. Gottipati, G. Ecocarb, T. Rourkela, Application of response surface methodology for optimization of Cr(III) and Cr(VI) adsorption on commercial activated, Res. J. Chem. Sci., 2 (2012) 40–48. Available at: https://www.researchgate.net/ publication/225076280 (accessed July 26, 2020).
  70. C.P. Huang, M.H. Wu, The removal of chromium(VI) from dilute aqueous solution by activated carbon, Water Res., 11 (1977) 673–679.
  71. I. Bautista-Toledo, J. Rivera-Utrilla, M.A. Ferro-García, C. Moreno-Castilla, Influence of the oxygen surface complexes of activated carbons on the adsorption of chromium ions from aqueous solutions: effect of sodium chloride and humic acid, Carbon, 32 (1994) 93–100.
  72. G.G. Jayson, J.A. Sangster, G. Thompson, M.C. Wilkinson, Adsorption of chromium from aqueous solution onto activated charcoal cloth, Carbon, 31 (1993) 487–492.
  73. G.J. Alaerts, V. Jitjaturunt, P. Kelderman, Use of coconut shellbased activated carbon for chromium(VI) removal, Water Sci. Technol., 21 (1989) 1701–1704.
  74. D. Singh, N.S. Rawat, Sorption of Pb(II) by bituminous coal, Indian J. Chem. Technol., 2 (1995) 49–50. Available at: http:// nopr.niscair.res.in/handle/123456789/31091 (accessed July 25, 2020).
  75. A.M. Youssef, T. El-Nabarawy, S.E. Samra, Sorption properties of chemically-activated carbons: 1. Sorption of cadmium(II) ions, Colloids Surf., A, 235 (2004) 153–163.
  76. R. Dobrowolski, M. Jaroniec, M. Kosmulski, Study of Cd(II) adsorption from aqueous solution on activated carbons, Carbon, 24 (1986) 15–20.
  77. L.S. de Lima, M.D.M. Araujo, S.P. Quináia, D.W. Migliorine, J.R. Garcia, Adsorption modeling of Cr, Cd and Cu on activated carbon of different origins by using fractional factorial design, Chem. Eng. J., 166 (2011) 881–889.
  78. M.A. Kahn, Y.I. Khattak, Adsorption of copper from copper sulfate solution on carbon black “Spheron 9”—II, Carbon, 30 (1992) 957–960.
  79. K.S. Low, C.K. Lee, S.L. Wong, Effect of dye modification on the sorption of copper by coconut husk, Environ. Technol., 16 (1995) 877–883.
  80. T. Motsi, N.A. Rowson, M.J.H. Simmons, Adsorption of heavy metals from acid mine drainage by natural zeolite, Int. J. Miner. Process., 92 (2009) 42–48.
  81. G. Annadurai, R.S. Juang, D.J. Lee, Adsorption of heavy metals from water using banana and orange peels, Water Sci. Technol., 47 (2003) 185–190.
  82. S. Ricordel, S. Taha, I. Cisse, G. Dorange, Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling, Sep. Purif. Technol., 24 (2001) 389–401.
  83. Y. Bulut, Z. Tez, Removal of heavy metals from aqueous solution by sawdust adsorption, J. Environ. Sci., 19 (2007) 160–166.
  84. M. Šćiban, B. Radetić, Ž. Kevrešan, M. Klašnja, Adsorption of heavy metals from electroplating wastewater by wood sawdust, Bioresour. Technol., 98 (2007) 402–409.
  85. V. Boonamnuayvitaya, C. Chaiya, W. Tanthapanichakoon, S. Jarudilokkul, Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay, Sep. Purif. Technol., 35 (2004) 11–22.
  86. B.S. Inbaraj, N. Sulochana, Mercury adsorption on a carbon sorbent derived from fruit shell of Terminalia catappa, J. Hazard. Mater., 133 (2006) 283–290.
  87. E.R. Nightingale, Phenomenological theory of ion solvation. Effective radii of hydrated ions, J. Phys. Chem., 63 (1959) 1381–1387.
  88. M. Goyal, V.K. Rattan, D. Aggarwal, R.C. Bansal, Removal of copper from aqueous solutions by adsorption on activated carbons, Colloids Surf., A, 190 (2001) 229–238.
  89. M. Goyal, V.K. Rattan, R.C. Bansal, Adsorption of nickel from aqueous solutions by activated carbons, Indian J. Chem. Technol., 6 (1999) 305–312. Available at: http://nopr.niscair.res. in/handle/123456789/16961 (accessed July 24, 2020).
  90. R.C. Bansal, D. Aggarwal, M. Goyal, B.C. Kaistha, Influence of carbon-oxygen surface groups on the adsorption of phenol by activated carbons, Indian J. Chem. Technol., 9 (2002) 290–296. Available at: http://nopr.niscair.res.in/ handle/123456789/18898 (accessed July 25, 2020).
  91. S. Biniak, A. Swiatkowski, M. Pakula, Electrochemical Studies of Phenomena at Active Carbon-Electrolyte Solution Interfaces, L.R. Radovic, Ed., Chemistry and Physics of Carbon, Marcel Dekker, New York, NY, 2001, pp. 125–225.
  92. Y. Liu, Is the free energy change of adsorption correctly calculated?, J. Chem. Eng. Data, 54 (2009) 1981–1985.
  93. P.S. Ghosal, A.K. Gupta, Determination of thermodynamic parameters from Langmuir isotherm constant-revisited, J. Mol. Liq., 225 (2017) 137–146.
  94. E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq., 273 (2019) 425–434.
  95. P. Saha, S. Chowdhury, Insight Into Adsorption Thermodynamics, M. Tadashi, Ed., Thermodynamics, INTECH Open Access Publisher, Janeza-Croatia, 2011. Available at: https://www.intechopen.com/books/thermodynamics/ insight-into-adsorption-thermodynamics.