References
- S. Xu, Y. Liu, Y. Yu, X. Zhang, J. Zhang, Y. Li, PAN/PVDF
chelating membrane for simultaneous removal of heavy
metal and organic pollutants from mimic industrial
wastewater, Sep. Purif. Technol., 235 (2020) 2–9, doi: 10.1016/j.
seppur.2019.116185.
- J.H. Park, Y.S. Ok, S.H. Kim, J.S. Cho, J.S. Heo, R.D. Delaune,
D.C. Seo, Competitive adsorption of heavy metals onto sesame
straw biochar in aqueous solutions, Chemosphere, 142 (2016)
77–83.
- V.K. Gupta, M. Al Khayat, A.K. Singh, M.K. Pal, Nano level
detection of Cd(II) using poly(vinyl chloride) based membranes
of Schiff bases, Anal. Chim. Acta, 634 (2009) 36–43.
- N. Madima, S.B. Mishra, I. Inamuddin, A.K. Mishra, Carbonbased
nanomaterials for remediation of organic and inorganic
pollutants from wastewater. A review, Environ. Chem. Lett.,
18 (2020) 1169–1191.
- J. Lehmann, S. Joseph, S. Joseph, Biochar for Environmental
Management, 2nd ed., Taylor & Francis, London, 2015.
- EBC (2012) ‘European Biochar Certificate - Guidelines for
a Sustainable Production of Biochar’, European Biochar
Foundation (EBC), Version 61, Arbaz, Switzerland, 2015,
pp. 1–22.
- H. Marsh, F. Rodríguez-Reinoso, Activated Carbon, Elsevier
Ltd., Amsterdam, The Netherlands, 2006.
- M. Smisek, S. Cerny, Activated Carbon, In: Topics in Organic
and General Chemistry, Elsevier Co., New York, USA, 1970,
pp. 93–123.
- I. Hilber, T.D. Bucheli, Activated carbon amendment to
remediate contaminated sediments and soils: a review,
Global Nest J., 12 (2010) 305–317.
- IBI, Standardized Product Definition and Product Testing
Guidelines for Biochar That Is Used in Soil, International
Biochar Initiative, 2015, 23 p. Available at: http://www.biocharinternational.
org/characterizationstandard (accessed July 24,
2020).
- N. Hagemann, K. Spokas, H.P. Schmidt, R. Kägi, M.A. Böhler,
T.D. Bucheli, Activated carbon, biochar and charcoal: linkages
and synergies across pyrogenic carbon’s ABCs, Water
(Switzerland), 10 (2018) 6–19, doi: 10.3390/w10020182.
- J.J. Schanz, R.H. Parry, The activated carbon industry, Ind. Eng.
Chem., 54 (1962) 24–28.
- R.A. Smith, On the absorption of gases by charcoal. —No. I,
Proc. R. Soc. London, 12 (1863) 424–426.
- J. Dewar, Absorption and thermal evolution of gases occluded
in charcoal at low temperatures, Am. J. Sci., 4–18 (1904)
295–300.
- N. Chaney, The activation of carbon, Trans. Am. Electron.
Chem Soc., 91 (1919) 3–6. Available at: https://scholar.google.
com/scholar?hl=en&as_sdt=0%2C5&q=Chaney%2C+N.+
The+activation+of+carbon.+Trans.+Am.+Electron.+Chem.+Soc.+
3_6+1919%2C+91&btnG= (accessed July 24, 2020).
- N.K. Chaney, Adsorptive Carbon and Process of Making
the Same, U.S. Patent 1497543, 1924. Available at: https://
patentimages.storage.googleapis.com/12/63/66/dc18fe04d
33abc/US1497543.pdf (accessed July 24, 2020).
- Metalbank-Co., Zinc Chloride for Activating Charcoal, British
Patent 238,889, 1924. Available at: https://patents.google.
com/patent/CA1334192C/en (accessed July 24, 2020).
- Bayer, Manufacture of Active Charcoal by Briquetting Charcoal
Fines and Chemicals under Pressure, British Patents 195,390,
1923. Available at: https://pubs.acs.org/doi/pdf/10.1021/ie50249
a009?src=recsys
- E.R. Sutcliffe, Absorbent and decolorising carbons, J. Soc.
Chem. Ind., 43 (1924) 635–637.
- W.K. Lewis, A.B. Metzner, Engineering, design, and process
development section activation of carbons, Ind. Eng. Chem.,
46 (1954) 849–858.
- W.A. Helbig, Activated carbon, J. Chem. Educ., 23 (1946) 98–102,
doi: 10.1021/ed023p98.
- W.M. Wright, Oxidations on charcoal, Math. Proc. Cambridge
Philos. Soc., 23 (1926) 187–190.
- H.H. Lowry, On the nature of active carbon, J. Phys. Chem.,
34 (1930) 63–73.
- O. Ruff, G. Schmidt, Amorpher kohlenstoff und graphit,
Z. Anorg. Allg. Chem., 148 (1925) 313–331.
- H.H. Sheldon, Charcoal activation, Phys. Rev., 16 (1920)
165–172.
- G. Mezohegyi, F.P. van der Zee, J. Font, A. Fortuny, A. Fabregat,
Towards advanced aqueous dye removal processes: a short
review on the versatile role of activated carbon, J. Environ.
Manage., 102 (2012) 148–164.
- F. Zhao, N. Rahunen, J.R. Varcoe, A. Chandra, C. Avignone-
Rossa, A.E. Thumser, R.C.T. Slade, Activated carbon cloth as
anode for sulfate removal in a microbial fuel cell, Environ.
Sci. Technol., 42 (2008) 4971–4976.
- EPA, Fact Sheet: Mercury and Air Toxics Standards for Power
Plants, 2011, pp. 1–6. Available at: https://www.epa.gov/
mats/cleaner-power-plants (accessed July 24, 2020).
- Grand-View-Research-Group, Activated Carbon Market Size,
Share | Global Industry Report, 2019–2025, 2019. Available
at: https://www.grandviewresearch.com/industry-analysis/activated-carbon-market (accessed July 24, 2020).
- R.C. Bansal, M. Goyal, Activated carbon adsorption, Taylor &
Francis, London, 2005.
- D. Parajuli, H. Kawakita, K. Inoue, K. Ohto, K. Kajiyama,
Persimmon peel gel for the selective recovery of gold,
Hydrometallurgy, 87 (2007) 133–139.
- B.R.M. Alsehli, A simple approach for determining the
maximum sorption capacity of chlorpropham from aqueous
solution onto granular activated charcoal, Processes, 8 (2020)
1–16, doi: 10.3390/pr8040398.
- D. Duranoğlu, A.W. Trochimczuk, U. Beker, Kinetics and
thermodynamics of hexavalent chromium adsorption onto
activated carbon derived from acrylonitrile-divinylbenzene
copolymer, Chem. Eng. J., 187 (2012) 193–202.
- A.A. Khan, R.P. Singh, Adsorption thermodynamics of
carbofuran on Sn(IV) arsenosilicate in H+, Na+ and Ca2+ forms,
Colloids Surf., 24 (1987) 33–42.
- J.W. Biggar, M.W. Cheung, Adsorption of picloram(4-amino-3,5,6-trichloropicolinic acid) on panoche, ephrata, and
palouse soils: a thermodynamic approach to the adsorption
mechanism, Soil Sci. Soc. Am. J., 37 (1973) 863–868.
- W. Huang, J. Chen, F. He, J. Tang, D. Li, Y. Zhu, Y. Zhang, Effective
phosphate adsorption by Zr/Al-pillared montmorillonite:
insight into equilibrium, kinetics and thermodynamics, Appl.
Clay Sci., 104 (2015) 252–260.
- M.F. Sawalha, J.R. Peralta-Videa, J. Romero-González,
J.L. Gardea-Torresdey, Biosorption of Cd(II), Cr(III), and Cr(VI)
by saltbush (Atriplex canescens) biomass: thermodynamic and
isotherm studies, J. Colloid Interface Sci., 300 (2006) 100–104.
- S. Mandal, S. Tripathy, T. Padhi, M.K. Sahu, R.K. Patel,
Removal efficiency of fluoride by novel Mg-Cr-Cl layered
double hydroxide by batch process from water, J. Environ. Sci.,
25 (2013) 993–1000.
- S. Kundu, A.K. Gupta, Investigations on the adsorption
efficiency of iron oxide coated cement (IOCC) towards As(V)—
kinetics, equilibrium and thermodynamic studies, Colloids
Surf., A, 273 (2006) 121–128.
- S. Dawood, T.K. Sen, Removal of anionic dye Congo red from
aqueous solution by raw pine and acid-treated pine cone
powder as adsorbent: equilibrium, thermodynamic, kinetics,
mechanism and process design, Water Res., 46 (2012) 1933–1946.
- L. Batistella, L.D. Venquiaruto, M. Di Luccio, J.V. Oliveira,
S.B.C. Pergher, M.A. Mazutti, D. de Oliveira, A.J. Mossi,
H. Treichel, R. Dallago, Evaluation of acid activation under
the adsorption capacity of double layered hydroxides of Mg–Al–CO3 type for fluoride removal from aqueous medium,
Ind. Eng. Chem. Res., 50 (2011) 6871–6876.
- Q. Chang, L. Zhu, Z. Luo, M. Lei, S. Zhang, H. Tang, Sonoassisted
preparation of magnetic magnesium–aluminum
layered double hydroxides and their application for
removing fluoride, Ultrason. Sonochem., 18 (2011) 553–561.
- D.P. Das, J. Das, K. Parida, Physicochemical characterization
and adsorption behavior of calcined Zn/Al hydrotalcitelike
compound (HTlc) towards removal of fluoride from
aqueous solution, J. Colloid Interface Sci., 261 (2003) 213–220.
- L. Lv, Defluoridation of drinking water by calcined Mg-Al-CO3
layered double hydroxides, Desalination, 208 (2007) 125–133.
- W. Ma, N. Zhao, G. Yang, L. Tian, R. Wang, Removal of fluoride
ions from aqueous solution by the calcination product of Mg–Al–Fe hydrotalcite-like compound, Desalination, 268 (2011)
20–26.
- R. Chang, Physical Chemistry for the Chemical and Biological
Sciences, University Science Books, Sausalito-USA, 2001.
- R. Chakraborty, A. Asthana, A.K. Singh, B. Jain,
A.B.H. Susan, Adsorption of heavy metal ions by various
low-cost adsorbents: a review, Int. J. Environ. Anal. Chem.,
100 (2020) 1–38, doi: 10.1080/03067319.2020.1722811.
- J. Biscoe, B.E. Warren, An X-ray study of carbon black, J. Appl.
Phys., 13 (1942) 364–371.
- Y.S. Ho, Citation review of Lagergren kinetic rate equation on
adsorption reactions, Scientometrics, 59 (2004) 171–177.
- Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by
peat, Chem. Eng. J., 70 (1998) 115–124.
- H.P. Boehm, Some aspects of the surface chemistry of carbon
blacks and other carbons, Carbon, 32 (1994) 759–769.
- H.P. Boehm, Chemical identification of surface groups, Adv.
Catal., 16 (1966) 179–274.
- J.W. Patrick, Active carbon, Chem. Eng. J., 40 (1989) 196–197.
- W.S. Stoy, M.D. Garret, CARBON BLACK, Pigment, Pt 1
12 (1975) 261–304, doi: 10.1016/b978-0-08-009421-2.50013-5.
- J.S. Mattson, H.B. Mark, Activated Carbon, Marcel Dekker,
New York, NY, 1971.
- H. Jankowska, A. Swiatkowski, J. Choma, Active Carbon, Ellis
Horwood, West Sussex, 1991.
- K. Kinoshita, Carbon: Electrochemical and Physicochemical
Properties, John Wiley Sons,New York, NY, London, 1988.
Available at: http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471848026.html (accessed July 25, 2020).
- M. Smisek, S. Cerny, Active Carbon, Manufacture, Properties
and Applications, In: Topics in Inorganic and General
Chemistry, Elsevier Publishing Company, 1970. Available
at: https://www.amazon.com/Active-Carbon-Manufacture-Properties-Applications/dp/0444407731 (accessed July 25,
2020).
- K.D. Linstedt, C.P. Houck, J.T. O’Connor, Trace element
removals in advanced wastewater treatment processes.,
J. Water Pollut. Control Fed., 43 (1971) 1507–1513.
- P.N. Cheremisinoff, Y.H. Habib, Cadmium, lead, mercury:
a plenary account for water pollution: removal techniques,
Water Sewage Works, 7 (1972) 46–51.
- S.D. Faust, O.M. Aly, Chemistry of Water Treatment, 1998.
Available at: https://books.google.com.sa/books?hl=en&lr=
&id=ivLiNH-NjOcC&oi=fnd&pg=PA1&dq=Faust,+S.D.
+and+Aly,+O.M.,+Chemistry+of+Water+Treatment,+Che
lsia,+M.L.,+Ed.,+Ann+Arbor+Press,+1988&ots=MEAdfU
TPgP&sig=R_kzephbZNEN2T8T3hBPBydJLzw&redir_
esc=y#v=onepage&q&f=false (accessed July 25, 2020).
- P.N. Cheremisinoff, F. Ellerbusch, Carbon Adsorption
Handbook, Ann Arbor Science Publishers, Ann Arbor, MI,
1978.
- T.W. Ahmad, T.H. Usmani, Z. Ahmad, Activated carbon from
indigenous inferior woods part II. Activation temperature,
time and particle size influence, Pak. J. Sci. Ind. Res.,
33 (1990) 177–180. Available at: https://agris.fao.org/agrissearch/
search.do?recordID=PK19910001339 (accessed July 26,
2020).
- A. Mathur, S.K. Khare, D.C. Rupainwar, Removal of heavy
metals from main sewer-water of Varanasi city by adsorption
on fly ash and blast furnace slag, J. Ind. Pollut. Control.,
5 (1989) 52–57. Available at: https://scholar.google.com/
citations?hl=en&user=sXOu2DIAAAAJ&view_op=list_
works&sortby=pubdate#d=gs_md_cita-d&u=%2Fcitations%
3Fview_op%3Dview_citation%26hl%3Den%26user%3
DsXOu2DIAAAAJ%26sortby%3Dpubdate%26citation_
for_view%3DsXOu2DIAAAAJ%3AMXK_kJrjxJIC%26t
(accessed July 26, 2020).
- E.M. van der Merwe, L.C. Prinsloo, C.L. Mathebula, H.C. Swart,
E. Coetsee, F.J. Doucet, Surface and bulk characterization
of an ultrafine South African coal fly ash with reference
to polymer applications, Appl. Surf. Sci., 317 (2014) 73–83.
- U.I. Gaya, E. Otene, A.H. Abdullah, Adsorption of aqueous
Cd(II) and Pb(II) on activated carbon nanopores prepared
by chemical activation of doum palm shell, Springerplus,
4 (2015) 1–18.
- D.P. Tiwari, K. Promod, A.K. Mishra, R.P. Singh,
R.P.S. Srivastav, Removal of toxic metals from electroplating
industries (effect of pH on removal by adsorption), Indian
J. Environ. Health, 31 (1989) 120–124.
- H. Jankowska, J. Choma, W. Burakiewiez-Mortka,
A. Swiatkowski, Active Carbon, Ellis Horwood Ltd., London,
1987.
- R. Gottipati, G. Ecocarb, T. Rourkela, Application of response
surface methodology for optimization of Cr(III) and Cr(VI)
adsorption on commercial activated, Res. J. Chem. Sci.,
2 (2012) 40–48. Available at: https://www.researchgate.net/
publication/225076280 (accessed July 26, 2020).
- C.P. Huang, M.H. Wu, The removal of chromium(VI) from
dilute aqueous solution by activated carbon, Water Res.,
11 (1977) 673–679.
- I. Bautista-Toledo, J. Rivera-Utrilla, M.A. Ferro-García,
C. Moreno-Castilla, Influence of the oxygen surface complexes
of activated carbons on the adsorption of chromium ions
from aqueous solutions: effect of sodium chloride and
humic acid, Carbon, 32 (1994) 93–100.
- G.G. Jayson, J.A. Sangster, G. Thompson, M.C. Wilkinson,
Adsorption of chromium from aqueous solution onto
activated charcoal cloth, Carbon, 31 (1993) 487–492.
- G.J. Alaerts, V. Jitjaturunt, P. Kelderman, Use of coconut shellbased
activated carbon for chromium(VI) removal, Water
Sci. Technol., 21 (1989) 1701–1704.
- D. Singh, N.S. Rawat, Sorption of Pb(II) by bituminous coal,
Indian J. Chem. Technol., 2 (1995) 49–50. Available at: http://
nopr.niscair.res.in/handle/123456789/31091 (accessed July 25,
2020).
- A.M. Youssef, T. El-Nabarawy, S.E. Samra, Sorption properties
of chemically-activated carbons: 1. Sorption of cadmium(II)
ions, Colloids Surf., A, 235 (2004) 153–163.
- R. Dobrowolski, M. Jaroniec, M. Kosmulski, Study of Cd(II)
adsorption from aqueous solution on activated carbons,
Carbon, 24 (1986) 15–20.
- L.S. de Lima, M.D.M. Araujo, S.P. Quináia, D.W. Migliorine,
J.R. Garcia, Adsorption modeling of Cr, Cd and Cu on
activated carbon of different origins by using fractional
factorial design, Chem. Eng. J., 166 (2011) 881–889.
- M.A. Kahn, Y.I. Khattak, Adsorption of copper from copper
sulfate solution on carbon black “Spheron 9”—II, Carbon,
30 (1992) 957–960.
- K.S. Low, C.K. Lee, S.L. Wong, Effect of dye modification on
the sorption of copper by coconut husk, Environ. Technol.,
16 (1995) 877–883.
- T. Motsi, N.A. Rowson, M.J.H. Simmons, Adsorption of
heavy metals from acid mine drainage by natural zeolite,
Int. J. Miner. Process., 92 (2009) 42–48.
- G. Annadurai, R.S. Juang, D.J. Lee, Adsorption of heavy
metals from water using banana and orange peels, Water
Sci. Technol., 47 (2003) 185–190.
- S. Ricordel, S. Taha, I. Cisse, G. Dorange, Heavy metals
removal by adsorption onto peanut husks carbon:
characterization, kinetic study and modeling, Sep. Purif.
Technol., 24 (2001) 389–401.
- Y. Bulut, Z. Tez, Removal of heavy metals from aqueous
solution by sawdust adsorption, J. Environ. Sci., 19 (2007)
160–166.
- M. Šćiban, B. Radetić, Ž. Kevrešan, M. Klašnja, Adsorption
of heavy metals from electroplating wastewater by wood
sawdust, Bioresour. Technol., 98 (2007) 402–409.
- V. Boonamnuayvitaya, C. Chaiya, W. Tanthapanichakoon,
S. Jarudilokkul, Removal of heavy metals by adsorbent
prepared from pyrolyzed coffee residues and clay, Sep. Purif.
Technol., 35 (2004) 11–22.
- B.S. Inbaraj, N. Sulochana, Mercury adsorption on a carbon
sorbent derived from fruit shell of Terminalia catappa,
J. Hazard. Mater., 133 (2006) 283–290.
- E.R. Nightingale, Phenomenological theory of ion solvation.
Effective radii of hydrated ions, J. Phys. Chem., 63 (1959)
1381–1387.
- M. Goyal, V.K. Rattan, D. Aggarwal, R.C. Bansal, Removal of
copper from aqueous solutions by adsorption on activated
carbons, Colloids Surf., A, 190 (2001) 229–238.
- M. Goyal, V.K. Rattan, R.C. Bansal, Adsorption of nickel from
aqueous solutions by activated carbons, Indian J. Chem.
Technol., 6 (1999) 305–312. Available at: http://nopr.niscair.res.
in/handle/123456789/16961 (accessed July 24, 2020).
- R.C. Bansal, D. Aggarwal, M. Goyal, B.C. Kaistha, Influence
of carbon-oxygen surface groups on the adsorption of
phenol by activated carbons, Indian J. Chem. Technol.,
9 (2002) 290–296. Available at: http://nopr.niscair.res.in/
handle/123456789/18898 (accessed July 25, 2020).
- S. Biniak, A. Swiatkowski, M. Pakula, Electrochemical Studies
of Phenomena at Active Carbon-Electrolyte Solution Interfaces,
L.R. Radovic, Ed., Chemistry and Physics of Carbon, Marcel
Dekker, New York, NY, 2001, pp. 125–225.
- Y. Liu, Is the free energy change of adsorption correctly
calculated?, J. Chem. Eng. Data, 54 (2009) 1981–1985.
- P.S. Ghosal, A.K. Gupta, Determination of thermodynamic
parameters from Langmuir isotherm constant-revisited,
J. Mol. Liq., 225 (2017) 137–146.
- E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraján,
I. Anastopoulos, A critical review of the estimation of the
thermodynamic parameters on adsorption equilibria. Wrong
use of equilibrium constant in the Van’t Hoof equation for
calculation of thermodynamic parameters of adsorption,
J. Mol. Liq., 273 (2019) 425–434.
- P. Saha, S. Chowdhury, Insight Into Adsorption
Thermodynamics, M. Tadashi, Ed., Thermodynamics, INTECH
Open Access Publisher, Janeza-Croatia, 2011. Available
at: https://www.intechopen.com/books/thermodynamics/
insight-into-adsorption-thermodynamics.