References

  1. W.S. Omar, Treatment of wastewaters contaminated with zinc ions using natural zeolite as adsorbent in a fixed bed column, J. Water Reuse Des., 5 (2015) 542–549.
  2. A. Murugesan, M. Divakaran, P. Senthilkumar, Enhanced adsorption of Cu2+, Ni2+, Cd2+ and Zn2+ ions onto physicochemically modified agricultural waste: kinetic, isotherm and thermodynamic studies, Des. Water Treat., 122 (2018) 176–191.
  3. K. Anbalagan, P. Senthil Kumar, K. Sangita Gayatri, S. Shahul Hameed, M. Sindhuja, C. Prabhakaran, R. Karthikeyan, Removal and recovery of Ni(II) ions from synthetic wastewater using surface modified Strychnos potatorum seeds: experimental optimization and mechanism, Des. Water Treat., 53 (2015) 171–182.
  4. L. Khezami, M.O. M’hamed, O.M. Lemine, M. Bououdina, A. Bessadok-Jemai, Milled goethite nanocrystalline for selective and fast uptake of cadmium ions from aqueous solution, Desal. Water Treat., 57 (2016) 6531–6539.
  5. P.C. Mishra, R.K. Patel, Removal of lead and zinc ions from water by low cost adsorbents, J. Hazard. Mater., 168 (2009) 319–325.
  6. R. Verma, P. Dwivedi, Heavy metal water pollution – a case study, Recent Res. Sci. Technol., 5 (2013) 98–99.
  7. N. Al-Afy, A. Hijazi, H. Rammal, M. Reda, R. Nehme, H. Annan, J. Toufaily, T. Hamieh, Removal of cadmium(II) ion from wastewater by using Lebanese Prunus avium stem as adsorbents, Desal. Water Treat., 92 (2017) 215–221.
  8. S. Dixit, D.P. Singh, Role of free living, immobilized and nonviable biomass of Nostoc muscorum in removal of heavy metals: an impact of physiological state of biosorbent, Cell. Mol. Biol., 60 (2014) 110–118.
  9. A. Günay, E. Arslankaya, İ. Tosun, Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics, J. Hazard. Mater., 146 (2007) 362–371.
  10. H. Altaher, A. Alghamdi, W. Omar, Innovative Biosorbent for the removal of cadmium ions from wastewater, Environ. Eng. Manage. J., 14 (2015) 793–800.
  11. A. Sarkar, G. Ravindran, V. Krishnamurthy, A brief review on the effect of cadmium toxicity: from cellular to organ level, Int. J. Biotechnol. Res., 3 (2013) 17–36.
  12. D. Lakherwal, Adsorption of heavy metals: a review, Int. J. Environ. Res. Dev., 4 (2014) 41–48.
  13. A.A. Alqadami, Mu. Naushad, T. Ahamad, M. Algamdi, A. Alshahrani, H. Uslu, S.K. Shukla, Removal of highly toxic Cd(II) metal ions from aqueous medium using magnetic nanocomposite: adsorption kinetics, isotherm and thermodynamics, Desal. Water Treat., 181 (2020) 355–361.
  14. N. Saffaj, H. Loukil, S. Alami Younssi, A. Albizane, M. Bouhria, M. Persin, A. Larbot, Filtration of solution containing heavy metals and dyes by means of ultrafiltration membranes deposited on support made of Moroccan clay, Desalination, 168 (2004) 301–306.
  15. K. Trivunac, S. Stevanovic, Removal of heavy metal ions from water by complexation-assisted ultrafiltration, Chemosphere, 64 (2006) 486–491.
  16. H. Abu Qdais, H. Moussa, Removal of heavy metals from wastewater by membrane processes: a comparative study, Desalination, 164 (2004) 105–110.
  17. J. Lv, K.Y. Wang, T.-S. Chung, Investigation of amphoteric polybenzimidazole (PBI) nanofiltration hollow fiber membrane for both cation and anions removal, J. Membr. Sci., 310 (2008) 557–566.
  18. H.A. Aziz, M.N. Adlan, K.S. Ariffin, Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone, Bioresour. Technol., 99 (2008) 1578–1583.
  19. M.R. Jakobsen, J. Fritt-Rasmussen, S. Nielsen, L.M. Ottosen, Electrodialytic removal of cadmium from wastewater sludge, J. Hazard. Mater., 106 (2004) 127–132.
  20. X.W. He, Z.Q. Fang, J.L. Jia, L.S. Ma, Y. Li, Z. Chai, X. Chen, Study on the treatment of wastewater containing Cu(II) by D851 ion exchange resin, Des. Water Treat., 57 (2016) 3597–3605.
  21. P. Pattanaik, M.K. Sahoo, TiO2 photocatalysis: progress from fundamentals to modification technology, Des. Water Treat., 52 (2014) 6567–6590.
  22. S. Żak, Treatment of the processing wastewaters containing heavy metals with the method based on flotation, Ecol. Chem. Eng. S, 19 (2012) 433–438.
  23. M.R. Gadekar, M.M. Ahammed, Coagulation/flocculation process for dye removal using water treatment residuals: modelling through artificial neural networks, Desal. Water Treat., 57 (2016) 26392–26400.
  24. T. Berrama, N. Benaouag, F. Kaouah, Z. Bendjama, Application of full factorial design to study the simultaneous removal of copper and zinc from aqueous solution by liquid–liquid extraction, Desal. Water Treat., 51 (2013) 2135–2145.
  25. W. Omar, R. Al Dwairi, Z.S. Abu-Hamatteh, N. Jabarin, Investigation of natural Jordanian zeolite tuff (JZT) as adsorbent for TOC removal from industrial wastewater in a continuous fixed bed column: study of the influence of particle size, Desal. Water Treat., 152 (2019) 26–32.
  26. A. Bhatnagar, A.K. Minocha, Conventional and nonconventional adsorbents for removal of pollutants from water – a review, Indian J. Chem. Technol., 13 (2006) 203–217.
  27. A. Aghababaei, M.C. Ncibi, M. Sillanpää, Optimized removal of oxytetracycline and cadmium from contaminated waters using chemically-activated and pyrolyzed biochars from forest and wood-processing residues, Bioresour. Technol., 239 (2017) 28–36.
  28. L. Cutillas-Barreiro, R. Paradelo, A. Igrexas-Soto, A. Núňez-Delgado, M.J. Fernàndez-Sanjurjo, E. Álvarez-Rodriguez, G. Garrote, J.C. Nóvoa-Muňoz, M. Arias-Estévez, Valorization of Biosorbent obtained from a forestry waste: competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn, Ecotoxicol. Environ. Saf., 131 (2016) 118–126.
  29. N.Y. Kim, M. Park, D.H. Park, A new efficient forest biowaste as biosorbent for removal of cationic heavy metals, Bioresource Technol., 175 (2015) 629–632.
  30. K. Pyrzynska, Removal of cadmium from wastewaters with low-cost adsorbents. J. Environ. Chem. Eng., 7 (2019) 102795, doi: 10.1016/j.jece.2018.11.040.
  31. A. Al-Ghamdi, H. Altaher, W. Omar, Application of date palm trunk fibers as adsorbents for removal of Cd2+ ions from aqueous solutions, J. Water Reuse Des., 3 (2013) 47–54.
  32. A.A. Alghamdi, An investigation on the use of date palm fibers and coir pith as adsorbents for Pb(II) ions from its aqueous solution, Des. Water Treat., 57 (2016) 12216–12226.
  33. T. Ahmad, M. Danish, M. Rafatullah, A. Ghazali, O. Sulaiman, R. Hashim, M.N.M. Ibrahim, The use of date palm as a potential adsorbent for wastewater treatment: a review, Environ. Sci. Pollut. Res., 19 (2012) 1464–1484.
  34. Z. Aksu, F. Gönen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochem., 39 (2004) 599–613.
  35. H.C. Thomas, Heterogeneous ion exchange in a flowing system, J. Am. Chem. Soc., 66 (1944) 1664–1666.
  36. J. Wu, H.-Q. Yu, Biosorption of 2,4-dichlorophenol from aqueous solutions by immobilized Phanerochaete chrysosporium biomass in a fixed-bed column, Chem. Eng. J., 138 (2008) 128–135.
  37. S. Ayoob, A.K. Gupta, P.B. Bhakat, Analysis of breakthrough developments and modeling of fixed bed adsorption system for As(V) removal from water by modified calcined bauxite (MCB), Sep. Purif. Technol., 52 (2007) 430–443.
  38. K.H. Chu, Fixed bed sorption: setting the record straight on the Bohart-Adams and Thomas models, J. Hazard. Mater., 177 (2010) 1006–1012.
  39. S. Ayoob, A.K. Gupta, Sorptive response profile of an adsorbent in the defluoridation of drinking water, Chem. Eng. J., 133 (2007) 273–281.
  40. Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service life, Am. Ind. Hyg. Assoc. J., 45 (1984) 509–516.
  41. A. Wolborska, Adsorption on activated carbon of p-nitrophenol from aqueous solution, Water Res., 23 (1989) 85–91.