References

  1. P. Hankare, A. Jadhav, R. Patil, K. Garadkar, I. Mulla, R. Sasikala, Photocatalytic degradation of rose bengal in visible light with Cr substituted MnFe2O4 ferrospinel, Arch. Phys. Res., 3 (2012) 269–276.
  2. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review, J. Hazard. Mater., 170 (2009) 520–529.
  3. M.A. Ahmad, R. Alrozi, Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: equilibrium, kinetic and thermodynamic studies, Chem. Eng. J., 171 (2011) 510–516.
  4. A. Habibi-Yangjeh, S. Asadzadeh-Khaneghah, S. Feizpoor, A. Rouhi, Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: can we win against pathogenic viruses?, J. Colloid Interface Sci., 580 (2020) 503–514.
  5. M. Kulkarni, P. Thakur, Photocatalytic degradation and mineralization of reactive textile azo dye using semiconductor metal oxide nano particles, Int. J. Eng. Res. Gen. Sci., 2 (2014) 245–254.
  6. M. Shekofteh-Gohari, A. Habibi-Yangjeh, M. Abitorabi, A. Rouhi, Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review, Crit. Rev. Env. Sci. Technol., 48 (2018) 806–857.
  7. M. Pirhashemi, A. Habibi-Yangjeh, S.R. Pouran, Review on the criteria anticipated for the fabrication of highly efficient ZnObased visible-light-driven photocatalysts, J. Ind. Eng. Chem., 62 (2018) 1–25.
  8. S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, O. Terasaki, Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks, J. Am. Chem. Soc., 121 (1999) 9611–9614.
  9. B.Y. Guan, Y. Cui, Z.Y. Ren, Z.-a. Qiao, L. Wang, Y.L. Liu, Q.S. Huo, Highly ordered periodic mesoporous organosilica nanoparticles with controllable pore structures, Nanoscale, 4 (2012) 6588–6596.
  10. S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: a review, J. Cleaner Prod., 276 (2020) 124319, doi: 10.1016/j. jclepro.2020.124319.
  11. A. Akhundi, A. Habibi-Yangjeh, M. Abitorabi, S. Rahim Pouran, Review on photocatalytic conversion of carbon dioxide to valueadded compounds and renewable fuels by graphitic carbon nitride-based photocatalysts, Catal. Rev., 61 (2019) 595–628.
  12. A. Akhundi, A. Badiei, G.M. Ziarani, A. Habibi-Yangjeh, M.J. Muñoz-Batista, R. Luque, Graphitic carbon nitride-based photocatalysts: toward efficient organic transformation for value-added chemicals production, Mol. Catal., 488 (2020) 110902, doi: 10.1016/j.mcat.2020.110902.
  13. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 114 (1992) 10834–10843.
  14. Y.-y. Zhou, X.-x. Li, Z.-x. Chen, Rapid synthesis of well-ordered mesoporous silica from sodium silicate, Powder Technol., 226 (2012) 239–245.
  15. N. Mizoshita, T. Tani, S. Inagaki, Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors, Chem. Soc. Rev., 40 (2011) 789–800.
  16. M. Rat, M.H. Zahedi-Niaki, S. Kaliaguine, T.-O. Do, Sulfonic acid functionalized periodic mesoporous organosilicas as acetalization catalysts, Microporous Mesoporous Mater., 112 (2008) 26–31.
  17. C.M. Li, J. Liu, L. Zhang, J. Yang, Q.H. Yang, Mesoporous organosilicas containing disulfide moiety: synthesis and generation of sulfonic acid functionality through chemical transformation in the pore wall, Microporous Mesoporous Mater., 113 (2008) 333–342.
  18. B. Karimi, M. Gholinejad, M. Khorasani, Highly efficient threecomponent coupling reaction catalyzed by gold nanoparticles supported on periodic mesoporous organosilica with ionic liquid framework, Chem. Commun., 48 (2012) 8961–8963.
  19. A. Modak, M. Nandi, A. Bhaumik, Titanium containing periodic mesoporous organosilica as an efficient catalyst for the epoxidation of alkenes, Catal. Today, 198 (2012) 45–51.
  20. S. Nasreen, U. Rafique, S. Ehrman, M.A. Ashraf, Hybrid mesoporous silicates: a distinct aspect to synthesis and application for decontamination of phenols, Saudi J. Biol. Sci., 26 (2019) 1161–1170.
  21. V. Lygin, The structure of the silica surface and its modification by thermal treatment, Kinet. Catal., 35 (1994) 480–486.
  22. L.N.H. Arakaki, L.M. Nunes, J.A. Simoni, C. Airoldi, Ethyleneimine anchored on thiol-modified silica gel surface — adsorption of divalent cations and calorimetric data, J. Colloid Interface Sci., 228 (2000) 46–51.
  23. B. Buszewski, M. Jezierska, M. Wełniak, D. Berek, Survey and trends in the preparation of chemically bonded silica phases for liquid chromatographic analysis, J. High. Resolut. Chromatogr., 21 (1998) 267–281.
  24. E.-B. Cho, D.J. Kim, M. Jaroniec, Monodisperse particles of bifunctional periodic mesoporous organosilica, J. Phys. Chem. C, 112 (2008) 4897–4902.
  25. T. Asefa, M.J. MacLachlan, N. Coombs, G.A. Ozin, Periodic mesoporous organosilicas with organic groups inside the channel walls, Nature, 402 (1999) 867–871.
  26. B. Karimi, F.K. Esfahani, Unexpected golden Ullmann reaction catalyzed by Au nanoparticles supported on periodic mesoporous organosilica (PMO), Chem. Commun., 47 (2011) 10452–10454.
  27. K. Sinkó, Influence of chemical conditions on the nanoporous structure of silicate aerogels, Materials, 3 (2010) 704–740.
  28. F. Rajabi, A.Z. Ebrahimi, A. Rabiee, A. Pineda, R. Luque, Synthesis and characterization of novel pyridine periodic mesoporous organosilicas and its catalytic activity in the knoevenagel condensation reaction, Materials, 13 (2020) 1097, doi: 10.3390/ma13051097.
  29. M.A. Mudassir, S.Z. Hussain, M. Khan, S.T. Asma, Z. Iqbal, Z. Huma, N. Ullah, H. Zhang, T.M. Ansari, I. Hussain, Polyacrylamide exotemplate-assisted synthesis of hierarchically porous nanostructured TiO2 macrobeads for efficient photodegradation of organic dyes and microbes, RSC Adv., 8 (2018) 29628–29636.
  30. K. Narasimharao, T.T. Ali, S. Bawaked, S. Basahel, Effect of Si precursor on structural and catalytic properties of nanosize magnesium silicates, Appl. Catal., A, 488 (2014) 208–218.
  31. B.W. Lee, Y.H. Kim, H.J. Lee, J. Yi, Synthesis of functionalized porous silicas via templating method as heavy metal ion adsorbents: the introduction of surface hydrophilicity onto the surface of adsorbents, Microporous Mesoporous Mater., 50 (2001) 77–90.
  32. A.S. Piers, C.H. Rochester, Infrared study of the adsorption of 1-aminopropyltrialkoxysilanes on silica at the solid/liquid interface, J. Colloid Interface Sci., 174 (1995) 97–103.
  33. Y. Mori, T.J. Pinnavaia, Optimizing organic functionality in mesostructured silica: direct assembly of mercaptopropyl groups in wormhole framework structures, Chem. Mater., 13 (2001) 2173–2178.
  34. H.H.P. Yiu, C.H. Botting, N.P. Botting, P.A. Wright, Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve, Phys. Chem. Chem. Phys., 3 (2001) 2983–2985.
  35. T.-S. Deng, Q.-F. Zhang, J.-Y. Zhang, X. Shen, K.-T. Zhu, J.-L. Wu, One-step synthesis of highly monodisperse hybrid silica spheres in aqueous solution, J. Colloid Interface Sci., 329 (2009) 292–299.
  36. L. dos Santos Andrade, B. Castanheira, S. Brochsztain, Periodic mesoporous organosilicas containing naphthalenediimides within the pore walls for asphaltene adsorption, Microporous Mesoporous Mater., 294 (2020) 109909, doi: 10.1016/j. micromeso.2019.109909.
  37. T. Qureshi, N. Memon, S.Q. Memon, M.A. Ashraf, Decontamination of ofloxacin: optimization of removal process onto sawdust using response surface methodology, Desal. Water Treat., 57 (2016) 221–229.
  38. K.V. Bineesh, D.-K. Kim, D.-W. Park, Synthesis and characterization of zirconium-doped mesoporous nanocrystalline TiO2, Nanoscale, 2 (2010) 1222–1228.
  39. L. Zhang, S.Z. Qiao, Y.G. Jin, Z.G. Chen, H.C. Gu, G.Q. Lu, Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals: fabrication and structure control, Adv. Mater., 20 (2008) 805–809.
  40. Y.-Y. Song, P. Roy, I. Paramasivam, P. Schmuki, Voltage‐induced payload release and wettability control on TiO2 and TiO2 nanotubes, Angew. Chem. Int. Ed., 49 (2010) 351–354.
  41. W.B. Dong, D.B. Wang, H. Wang, M.K. Li, F. Chen, F.Y. Jia, Q. Yang, X.M. Li, X.Z. Yuan, J. Gong, H.L. Li, J. Ye, Facile synthesis of In2S3/UiO-66 composite with enhanced adsorption performance and photocatalytic activity for the removal of tetracycline under visible light irradiation, J. Colloid Interface Sci., 535 (2019) 444–457.
  42. W.A. Daoud, J.H. Xin, Y.-H. Zhang, Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities, Surf. Sci., 599 (2005) 69–75.
  43. O. Seven, B. Dindar, S. Aydemir, D. Metin, M.A. Ozinel, S. Icli, Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust, J. Photochem. Photobiol., A, 165 (2004) 103–107.
  44. W.J. Tan, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs–a critical review, Environ. Sci. Nano, 5 (2018) 257–278.
  45. S. Yaparatne, C.P. Tripp, A. Amirbahman, Photodegradation of taste and odor compounds in water in the presence of immobilized TiO2-SiO2 photocatalysts, J. Hazard. Mater., 346 (2018) 208–217.