References

  1. A.E. Ghaly, R. Ananthashankar, M. Alhattab, V.V. Ramakrishnan, Production, characterization and treatment of textile effluents: a critical review, J. Chem. Eng. Process Technol., 5 (2014) 1–19.
  2. P. Rajasulochana, V. Preethy, Comparison on efficiency of various techniques in treatment of waste and sewage water–a comprehensive review, Resour.-Effic. Technol., 2 (2016) 175–184.
  3. D. Bhatia, N.R. Sharma, J. Singh, R.S. Kanwar, Biological methods for textile dye removal from wastewater: a review, Crit. Rev. Env. Sci. Technol., 47 (2017) 1836–1876.
  4. K. Vikrant, B.S. Giri, N. Raza, K. Roy, K.H. Kim, B.N. Rai, R.S. Singh, Recent advancements in bioremediation of dye: current status and challenges, Bioresour. Technol., 253 (2018) 355–367.
  5. T. Deblonde, C. Cossu-Leguille, P. Hartemann, Emerging pollutants in wastewater: a review of the literature, Int. J. Hyg. Environ. Health, 214 (2011) 442–448.
  6. D.A. Yaseen, M. Scholz, Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review, Int. J. Environ. Sci. Technol., 16 (2019) 1193–1226.
  7. C. Fernández, M.S. Larrechi, M.P. Callao, TrAC, An analytical overview of processes for removing organic dyes from wastewater effluents, Trends Anal. Chem., 29 (2010) 1202–1211.
  8. S.D. Faust, O.M. Aly, Adsorption Processes for Water Treatment, Elsevier, 2016.
  9. I. Anastopoulos, A. Mittal, M. Usman, J. Mittal, G. Yu, A. Núñez-Delgado, M. Kornaros, A review on halloysite-based adsorbents to remove pollutants in water and wastewater, J. Mol. Liq., 269 (2018) 855–868.
  10. S. Sarkar, A. Banerjee, U. Halder, R. Biswas, R. Bandopadhyay, Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes, Water Conserv. Sci. Eng., 2 (2017) 121–131.
  11. A. Kausar, M. Iqbal, A. Javed, K. Aftab, H.N. Bhatti, S. Nouren, Dyes adsorption using clay and modified clay: a review, J. Mol. Liq., 256 (2018) 395–407.
  12. L. Luo, Y. Guo, T. Zhu, Y. Zheng, Adsorption species distribution and multicomponent adsorption mechanism of SO2, NO, and CO2 on commercial adsorbents, Energy Fuels, 31 (2017) 11026–11033.
  13. A. Mittal, M. Teotia, R.K. Soni, J. Mittal, Applications of egg shell and egg shell membrane as adsorbents: a review, J. Mol. Liq., 223 (2016) 376–387.
  14. J. Mittal, V. Thakur, A. Mittal, Batch removal of hazardous azo dye Bismark Brown R using waste material hen feather, Ecol. Eng., 60 (2013) 249–253
  15. S. Banerjee, M.C. Chattopadhyaya, Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low-cost agricultural by-product, Arabian J. Chem., 10 (2017) S1629–S1638.
  16. T.G. Chuah, A. Jumasiah, I. Azni, S. Katayon, S.T. Choong, Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview, Desalination, 175 (2005) 305–316.
  17. A. Mittal, R. Jain, J. Mittal, M. Shrivastava, Adsorptive removal of hazardous dye quinoline yellow from wastewater using coconut-husk as potential adsorbent, Fresenius Environ. Bull., 19 (2010) 1–9.
  18. H. Lata, V.K. Garg, R.K. Gupta, Removal of a basic dye from aqueous solution by adsorption using Parthenium hysterophorus: an agricultural waste, Dyes Pigm., 74 (2007) 653–658.
  19. V.K. Gupta, A. Mittal, V. Gajbe, J. Mittal, Adsorption of basic fuchsin using waste materials-bottom ash and de-oiled soya as adsorbents, J. Colloid Interface Sci., 319 (20078) 30–39.
  20. D. Sun, X. Zhang, Y. Wu, X. Liu, Adsorption of anionic dyes from aqueous solution on fly ash, J. Hazard. Mater., 181 (2010) 335–342.
  21. S.D. Khattri, M.K. Singh, Removal of malachite green from dye wastewater using neem sawdust by adsorption, J. Hazard. Mater., 167 (2009) 1089–1094.
  22. H.J. Wang, J. Kang, H.J. Liu, J.H. Qu, Preparation of organically functionalized silica gel as adsorbent for copper ion adsorption, J. Environ. Sci., 21 (2009) 1473–1479.
  23. J. Shi, Z. Yang, H. Dai, X. Lu, L. Peng, X. Tan, R. Fahim, Preparation and application of modified zeolites as adsorbents in wastewater treatment, Water Sci. Technol., 2017 (2018) 621–635.
  24. L.M. Camacho, A. Torres, D. Saha, S. Deng, Adsorption equilibrium and kinetics of fluoride on sol–gel-derived activated alumina adsorbents, J. Colloid Interface Sci., 349 (2010) 307–313.
  25. G. Mezohegyi, F.P. van der Zee, J. Font, A. Fortuny, A. Fabregat, Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon, J. Environ. Manage., 102 (2012) 148–164.
  26. Z. Wu, D. Zhao, Ordered mesoporous materials as adsorbents, Chem. Commun., 47 (2011) 3332–3338.
  27. R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phys. Chem. B, 103 (1999) 7743–7746.
  28. Y.T. Ma, L. Liu, Z.Y. Yuan, Direct synthesis of ordered mesoporous carbons, Chem. Soc. Rev., 42 (2013) 3977–4003.
  29. F. Sakina, R.T. Baker, Metal-and halogen-free synthesis of ordered mesoporous carbon materials, Microporous Mesoporous Mater., 289 (2019) 109622.
  30. V.M. Nurchi, M. Crespo-Alonso, R. Biesuz, R. Alberti, M.I. Pilo, N. Spano, G. Sanna, Sorption of chrysoidine by row cork and cork entrapped in calcium alginate beads, Arabian J. Chem., 7 (2014) 133–138.
  31. A.H. Lu, B. Spliethoff, F. Schüth, Aqueous synthesis of ordered mesoporous carbon via self-assembly catalyzed by amino acid, Chem. Mater., 20 (2008) 5314–5319.
  32. A.M. Cardenas-Peña, J.G. Ibanez, R. Vasquez-Medrano, Determination of the point of zero charge for electrocoagulation precipitates from an iron anode, Int. J. Electrochem. Sci., 7 (2012) 6142–6153.
  33. A. Mittal, Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers, J. Hazard. Mater., 133 (2006) 196–202.
  34. P.M. Mathias, R. Kumar, J.D. Moyer, J.M. Schork, S.R. Srinivasan, S.R. Auvil, O. Talu, Correlation of multicomponent gas adsorption by the dual-site Langmuir model. Application to nitrogen/oxygen adsorption on 5A-zeolite, Ind. Eng. Chem. Res., 35 (1996) 2477–2483.
  35. R.I. Masel, Principles of Adsorption and Reaction on Solid Surfaces (Vol. 3), John Wiley and Sons, 1996.
  36. A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces (Vol. 150), Inter-science Publishers, New York 1967, p. 150.
  37. N.D. Hutson, R.T. Yang, Theoretical basis for the Dubinin- Radushkevitch (DR) adsorption isotherm equation, Adsorption, 3 (1997) 189–195.
  38. W.T. Chakraborty, R.K. Weber, Pore and solid diffusion model for fixed bed adsorbents. J. Am. Inst. Chem. Eng, 20 (1974) 228.
  39. F.G. Helfferich, J.S. Dranoff, Ion Exchange, McGraw-Hill, New York, 1962, p. 624.
  40. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  41. G.E. Boyd, A.W. Adamson, L.S. Myers Jr., The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics1, J. Am. Chem. Soc., 69 (1947) 2836–2848.
  42. D. Reichenberg, Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange, J. Am. Chem. Soc., 75 (1953) 589–597.
  43. J. Crank, The Mathematics of Diffusion Oxford at the Clarendon Press, 1956.