References
- C. Jiang, X. Wang, G. Wang, C. Hao, X. Li, T. Li, Adsorption
performance of a polysaccharide composite hydrogel based on
crosslinked glucan/chitosan for heavy metal ions, Composites,
Part B, 169 (2019) 45–54.
- A. Mohammadi, P. Veisi, High adsorption performance of
β-cyclodextrin-functionalized multi-walled carbon nanotubes
for the removal of organic dyes from water and industrial
wastewater, J. Environ. Chem. Eng., 6 (2018) 4634–4643.
- M.K. Uddin, A review on the adsorption of heavy metals by
clay minerals, with special focus on the past decade, Chem.
Eng. J., 308 (2017) 438–462.
- Y. Wu, H. Pang, Y. Liu, X. Wang, S. Yu, D. Fu, J. Chen, X. Wang,
Environmental remediation of heavy metal ions by novelnanomaterials:
a review, Environ. Pollut., 246 (2019) 608–620.
- C. Cai, M. Zhao, Z. Yu, H. Rong, C. Zhang, Utilization of
nanomaterials for in-situ remediation of heavy metal(loid)
contaminated sediments: a review, Sci. Total Environ.,
662 (2019) 205–217.
- Y. Zhu, X. Liu, Y. Hu, R. Wang, M. Chen, J. Wu, Y. Wang,
S. Kang, Y. Sun, M. Zhu, Behavior, remediation effect and
toxicity of nanomaterials in water environments, Environ. Res.,
174 (2019) 54–60.
- M.E. Mahmoud, E.A. Saad, M.A. Soliman, M.S. Abdelwahab,
Removal of radioactive cobalt/zinc and some heavy metals from
water using diethylenetriamine/2-pyridinecarboxaldehyde
supported on NZVI, Microchem. J., 145 (2019) 1102–1111.
- Z. Fan, Q. Zhang, B. Gao, M. Li, C. Liu, Y. Qiu, Removal of
hexavalent chromium by biochar supported nZVI composite:
batch and fixed-bed column evaluations, mechanisms, and
secondary contamination prevention, Chemosphere, 217 (2019)
85–94.
- S. Wang, M. Zha, M. Zhou, Y.C. Li, J. Wang, B. Gao, S. Sato,
K. Feng, W. Yin, A.D. Igalavithana, P. Oleszczuk, X. Wang,
Y.S. Ok, Biochar-supported nZVI (nZVI/BC) for contaminant
removal from soil and water: a critical review, J. Hazard. Mater.,
373 (2019) 820–834.
- B. Wang, Z. Sun, Q. Sun, J. Wang, Z. Du, C. Li, X. Li,
The preparation of bifunctional electrospun air filtration
membranes by introducing attapulgite for the efficient
capturing of ultrafine PMs and hazardous heavy metal ions,
Environ. Pollut., 249 (2019) 851–859.
- H. Xu, Y. Zhang, Y. Chen, W. Tian, Z. Zhao, J. Tang, Polyaniline/attapulgite supported nanoscale zero-valent iron for the rival
removal of azo dyes in aqueous solution, Adsorpt. Sci. Technol.,
37 (2019) 217–235.
- Y. Wang, A. Chen, M. Peng, D. Tan, X. Liu, C. Shang, S. Luo,
L. Peng, Preparation and characterization of a fluorizated
kaoline modified melamine sponge as an absorbent for efficient
and rapid oil/water separation, J. Cleaner Prod., 217 (2019)
308–316.
- Y. Xie, Y. Yi, Y. Qin, L. Wang, G. Liu, Y. Wu, Z. Diao, T. Zhou,
M. Xu, Perchlorate degradation in aqueous solution using
chitosan-stabilized zero-valent iron nanoparticles, Sep. Purif.
Technol., 171 (2016) 164–173.
- B. Zhang, N. Chen, C. Feng, Z. Zhang, Adsorption for
phosphate by crosslinked/non-crosslinked-chitosan-Fe(III)
complex sorbents: characteristic and mechanism, Chem. Eng. J.,
353 (2018) 361–372.
- X. Jin, Z. Zhuang, B. Yu, Z. Chen, Z. Chen, Functional chitosanstabilized
nanoscale zero-valent iron used to remove acid
fuchsine with the assistance of ultrasound, Carbohydr. Polym.,
136 (2016) 1085–1090.
- N. Sun, Y. Zhang, L. Ma, S. Yu, J. Li, Preparation and
characterization of chitosan/purified attapulgite composite for
sharp adsorption of humic acid from aqueous solution at low
temperature, J. Taiwan Inst. Chem. Eng., 78 (2017) 96–103.
- Y. Deng, L. Wang, X. Hu, B. Liu, Z. Wei, S. Yang, C. Sun,
Highly efficient removal of tannic acid from aqueous solution
by chitosan-coated attapulgite, Chem. Eng. J., 181–182 (2012)
300–306.
- R. Baghel, S. Upadhyaya, S.P. Chaurasia, K. Singh, S. Kalla,
Optimization of process variables by the application of response
surface methodology for naphthol blue black dye removal in
vacuum membrane distillation, J. Cleaner Prod., 199 (2018)
900–915.
- A. Muthukkumaran, K. Aravamudan, Combined homogeneous
surface diffusion model–design of experiments approach to
optimize dye adsorption considering both equilibrium and
kinetic aspects, J. Environ. Manage., 204 (2017) 424–435.
- H. Hu, Y. Wu, Z. Zhu, Optimization of microwave-assisted
preparation of TPA from waste PET using response surface
methodology, J. Polym. Environ., 26 (2018) 375–382.
- A. Sreedharan, S.T. Ong, Combination of Plackett–Burman and
response surface methodology experimental design to optimize
Malachite Green dye removal from aqueous environment,
Chem. Data Collect., 25 (2020) 100317, doi: 10.1016/j.
cdc.2019.100317.
- J. Zhou, X. Yu, C. Ding, Z. Wang, Q. Zhou, H. Pao, W. Cai,
Optimization of phenol degradation by Candida tropicalis Z-04 using Plackett–Burman design and response surface
methodology, J. Environ. Sci., 23 (2011) 22–30.
- D. Gao, Y. Zhang, B. Lyu, P. Wang, J. Ma, Nanocomposite based
on poly (acrylic acid) / attapulgite towards flame retardant
of cotton fabrics, Carbohydr. Polym., 206 (2019) 245–253.
- M. Gu, Q. Sui, U. Farooq, X. Zhang, Z. Qiu, S. Lyu, Degradation
of phenanthrene in sulfate radical based oxidative environment
by nZVI-PDA functionalized rGO catalyst, Chem. Eng. J.,
354 (2018) 541–552.
- H. Li, Q. Zhou, F. Liu, W. Zhang, Z. Tan, H. Zhou, Z. Huang,
S. Jiao, Y. Kuang, Biomimetic design of ultrathin edgeriched FeOOH@carbon nanotubes as high-efficiency electrocatalysts
for water splitting, Appl. Catal., B, 255 (2019) 117755,
doi: 10.1016/j.apcatb.2019.117755.
- T. Wang, J. Su, X. Jin, Z. Chen, M. Megharaj, R. Naidu,
Functional clay supported bimetallic nZVI/Pd nanoparticles
used for removal of methyl orange from aqueous solution,
J. Hazard. Mater., 262 (2013) 819–825.
- Y. Wu, Q. Yue, Z. Ren, B. Gao, Immobilization of nanoscale
zero-valent iron particles (nZVI) with synthesized activated
carbon for the adsorption and degradation of chloramphenicol
(CAP), J. Mol. Liq., 262 (2018) 19–28.
- X. Li, L. Huang, H. Fang, G. He, D. Reible, C. Wang,
Immobilization of phosphorus in sediments by nano zerovalent
iron (nZVI) from the view of mineral composition,
Sci. Total Environ., 694 (2019) 133695, doi: 10.1016/j.
scitotenv.2019.133695.
- X.F. Zhao, Z.L. Liu, X.D. Li, S.P. Li, F.G. Song, The performance of
attapulgite hybrids combined with MTX and Au nanoparticles,
J. Phys. Chem. Solids, 124 (2019) 73–80.
- Y. Chen, W. Long, H. Xu, Efficient removal of Acid Red 18 from
aqueous solution by in-situ polymerization of polypyrrolechitosan
composites, J. Mol. Liq., 287 (2019) 110888, doi:
10.1016/j.molliq.2019.110888.
- L. Chen, T. Yuan, R. Ni, Q. Yue, B. Gao, Multivariate optimization
of ciprofloxacin removal by polyvinylpyrrolidone stabilized
NZVI/Cu bimetallic particles, Chem. Eng. J., 365 (2019a)
183–192.
- D.M.K. Nguyen, T. Imai, T.L.T. Dang, A. Kanno, T. Higuchi,
K. Yamamoto, M. Sekine, Response surface method for
modeling the removal of carbon dioxide from a simulated gas
using water adsorption enhanced with a liquid-film-forming
device, J. Environ. Sci., 65 (2018) 116–126.
- G.D. Vyavahare, R.G. Gurav, P.P. Jadhav, R.R. Patil, C.B. Aware,
J.P. Jadhav, Response surface methodology optimization for
sorption of malachite green dye on sugarcane bagasse biochar
and evaluating the residual dye for phyto and cytogenotoxicity,
Chemosphere, 194 (2018) 306–315.
- U. Roy, S. Sengupta, P. Banerjee, P. Das, A. Bhowal, S. Datta,
Assessment on the decolourization of textile dye (Reactive
Yellow) using Pseudomonas sp. immobilized on fly ash: response
surface methodology optimization and toxicity evaluation,
J. Environ. Manage., 223 (2018) 185–195.
- P. Gharbani, Modeling and optimization of reactive yellow
145 dye removal process onto synthesized MnOX-CeO2 using
response surface methodology, Colloid Surf., A, 548 (2018)
191–197.
- R. Subramaniam, S.K. Ponnusamy, Novel adsorbent from
agricultural waste (cashew NUT shell) for methylene blue dye
removal: optimization by response surface methodology, Water
Resour. Ind., 11 (2015) 64–70.
- R.R. Madvaar, M.A. Taher, H. Fazelirad, Synthesis
and characterization of magnetic halloysite-iron oxide
nanocomposite and its application for naphthol green B
removal, Appl. Clay Sci., 137 (2017) 101–106.
- S.E. Rizk, M.M. Hamed, Batch sorption of iron complex dye,
naphthol green B, from wastewater on charcoal, kaolinite, and
tafla, Des. Water Treat., 56 (2015) 1536–1546.
- M.F. Attallah, I.M. Ahmed, M.M. Hamed, Treatment of
industrial wastewater containing Congo Red and Naphthol
Green B using low-cost adsorbent, Environ. Sci. Pollut. Res.,
20 (2013) 1106–1116.
- Y. Chen, Z. Lin, R. Hao, H. Xu, C. Huang, Rapid adsorption
and reductive degradation of Naphthol Green B from aqueous
solution by Polypyrrole/Attapulgite composites supported
nanoscale zero-valent iron, J. Hazard. Mater., 371 (2019b) 8–17.
- F. Zhang, Z. Ni, S. Xia, X. Liu, Q. Wang, Removal of Naphthol
Green B from aqueous solution by calcined layered double
hydroxides: adsorption property and mechanism studies, Chin.
J. Chem., 27 (2009) 1767–1772.
- C. Lu, J. Yao, T.S. Knudsen, M. Made, J. Gu, J. Liu,
H. Li, Z. Junyang, Degradation of a-nitroso-b-naphthol by
UVA-B activated peroxide, persulfate and monopersulfate
oxidants in water, J. Cleaner Prod., 238 (2019) 117942,
doi: 10.1016/j.jclepro.2019.117942.
- J.S. Clemente, P.M. Fedorak, A review of the occurrence,
analyses, toxicity, and biodegradation of naphthenic acids,
Chemosphere, 60 (2005) 585–600.
- S. Cheng, N. Li, L. Jiang, Y. Li, B. Xu, W. Zhou, Biodegradation
of metal complex Naphthol Green B and formation of iron–sulfur nanoparticles by marine bacterium Pseudo alteromonas sp CF10-13, Bioresour. Technol., 273 (2019) 49–55.