References

  1. C. Jiang, X. Wang, G. Wang, C. Hao, X. Li, T. Li, Adsorption performance of a polysaccharide composite hydrogel based on crosslinked glucan/chitosan for heavy metal ions, Composites, Part B, 169 (2019) 45–54.
  2. A. Mohammadi, P. Veisi, High adsorption performance of β-cyclodextrin-functionalized multi-walled carbon nanotubes for the removal of organic dyes from water and industrial wastewater, J. Environ. Chem. Eng., 6 (2018) 4634–4643.
  3. M.K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J., 308 (2017) 438–462.
  4. Y. Wu, H. Pang, Y. Liu, X. Wang, S. Yu, D. Fu, J. Chen, X. Wang, Environmental remediation of heavy metal ions by novelnanomaterials: a review, Environ. Pollut., 246 (2019) 608–620.
  5. C. Cai, M. Zhao, Z. Yu, H. Rong, C. Zhang, Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: a review, Sci. Total Environ., 662 (2019) 205–217.
  6. Y. Zhu, X. Liu, Y. Hu, R. Wang, M. Chen, J. Wu, Y. Wang, S. Kang, Y. Sun, M. Zhu, Behavior, remediation effect and toxicity of nanomaterials in water environments, Environ. Res., 174 (2019) 54–60.
  7. M.E. Mahmoud, E.A. Saad, M.A. Soliman, M.S. Abdelwahab, Removal of radioactive cobalt/zinc and some heavy metals from water using diethylenetriamine/2-pyridinecarboxaldehyde supported on NZVI, Microchem. J., 145 (2019) 1102–1111.
  8. Z. Fan, Q. Zhang, B. Gao, M. Li, C. Liu, Y. Qiu, Removal of hexavalent chromium by biochar supported nZVI composite: batch and fixed-bed column evaluations, mechanisms, and secondary contamination prevention, Chemosphere, 217 (2019) 85–94.
  9. S. Wang, M. Zha, M. Zhou, Y.C. Li, J. Wang, B. Gao, S. Sato, K. Feng, W. Yin, A.D. Igalavithana, P. Oleszczuk, X. Wang, Y.S. Ok, Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review, J. Hazard. Mater., 373 (2019) 820–834.
  10. B. Wang, Z. Sun, Q. Sun, J. Wang, Z. Du, C. Li, X. Li, The preparation of bifunctional electrospun air filtration membranes by introducing attapulgite for the efficient capturing of ultrafine PMs and hazardous heavy metal ions, Environ. Pollut., 249 (2019) 851–859.
  11. H. Xu, Y. Zhang, Y. Chen, W. Tian, Z. Zhao, J. Tang, Polyaniline/attapulgite supported nanoscale zero-valent iron for the rival removal of azo dyes in aqueous solution, Adsorpt. Sci. Technol., 37 (2019) 217–235.
  12. Y. Wang, A. Chen, M. Peng, D. Tan, X. Liu, C. Shang, S. Luo, L. Peng, Preparation and characterization of a fluorizated kaoline modified melamine sponge as an absorbent for efficient and rapid oil/water separation, J. Cleaner Prod., 217 (2019) 308–316.
  13. Y. Xie, Y. Yi, Y. Qin, L. Wang, G. Liu, Y. Wu, Z. Diao, T. Zhou, M. Xu, Perchlorate degradation in aqueous solution using chitosan-stabilized zero-valent iron nanoparticles, Sep. Purif. Technol., 171 (2016) 164–173.
  14. B. Zhang, N. Chen, C. Feng, Z. Zhang, Adsorption for phosphate by crosslinked/non-crosslinked-chitosan-Fe(III) complex sorbents: characteristic and mechanism, Chem. Eng. J., 353 (2018) 361–372.
  15. X. Jin, Z. Zhuang, B. Yu, Z. Chen, Z. Chen, Functional chitosanstabilized nanoscale zero-valent iron used to remove acid fuchsine with the assistance of ultrasound, Carbohydr. Polym., 136 (2016) 1085–1090.
  16. N. Sun, Y. Zhang, L. Ma, S. Yu, J. Li, Preparation and characterization of chitosan/purified attapulgite composite for sharp adsorption of humic acid from aqueous solution at low temperature, J. Taiwan Inst. Chem. Eng., 78 (2017) 96–103.
  17. Y. Deng, L. Wang, X. Hu, B. Liu, Z. Wei, S. Yang, C. Sun, Highly efficient removal of tannic acid from aqueous solution by chitosan-coated attapulgite, Chem. Eng. J., 181–182 (2012) 300–306.
  18. R. Baghel, S. Upadhyaya, S.P. Chaurasia, K. Singh, S. Kalla, Optimization of process variables by the application of response surface methodology for naphthol blue black dye removal in vacuum membrane distillation, J. Cleaner Prod., 199 (2018) 900–915.
  19. A. Muthukkumaran, K. Aravamudan, Combined homogeneous surface diffusion model–design of experiments approach to optimize dye adsorption considering both equilibrium and kinetic aspects, J. Environ. Manage., 204 (2017) 424–435.
  20. H. Hu, Y. Wu, Z. Zhu, Optimization of microwave-assisted preparation of TPA from waste PET using response surface methodology, J. Polym. Environ., 26 (2018) 375–382.
  21. A. Sreedharan, S.T. Ong, Combination of Plackett–Burman and response surface methodology experimental design to optimize Malachite Green dye removal from aqueous environment, Chem. Data Collect., 25 (2020) 100317, doi: 10.1016/j. cdc.2019.100317.
  22. J. Zhou, X. Yu, C. Ding, Z. Wang, Q. Zhou, H. Pao, W. Cai, Optimization of phenol degradation by Candida tropicalis Z-04 using Plackett–Burman design and response surface methodology, J. Environ. Sci., 23 (2011) 22–30.
  23. D. Gao, Y. Zhang, B. Lyu, P. Wang, J. Ma, Nanocomposite based on poly (acrylic acid) / attapulgite towards flame retardant of cotton fabrics, Carbohydr. Polym., 206 (2019) 245–253.
  24. M. Gu, Q. Sui, U. Farooq, X. Zhang, Z. Qiu, S. Lyu, Degradation of phenanthrene in sulfate radical based oxidative environment by nZVI-PDA functionalized rGO catalyst, Chem. Eng. J., 354 (2018) 541–552.
  25. H. Li, Q. Zhou, F. Liu, W. Zhang, Z. Tan, H. Zhou, Z. Huang, S. Jiao, Y. Kuang, Biomimetic design of ultrathin edgeriched FeOOH@carbon nanotubes as high-efficiency electrocatalysts for water splitting, Appl. Catal., B, 255 (2019) 117755, doi: 10.1016/j.apcatb.2019.117755.
  26. T. Wang, J. Su, X. Jin, Z. Chen, M. Megharaj, R. Naidu, Functional clay supported bimetallic nZVI/Pd nanoparticles used for removal of methyl orange from aqueous solution, J. Hazard. Mater., 262 (2013) 819–825.
  27. Y. Wu, Q. Yue, Z. Ren, B. Gao, Immobilization of nanoscale zero-valent iron particles (nZVI) with synthesized activated carbon for the adsorption and degradation of chloramphenicol (CAP), J. Mol. Liq., 262 (2018) 19–28.
  28. X. Li, L. Huang, H. Fang, G. He, D. Reible, C. Wang, Immobilization of phosphorus in sediments by nano zerovalent iron (nZVI) from the view of mineral composition, Sci. Total Environ., 694 (2019) 133695, doi: 10.1016/j. scitotenv.2019.133695.
  29. X.F. Zhao, Z.L. Liu, X.D. Li, S.P. Li, F.G. Song, The performance of attapulgite hybrids combined with MTX and Au nanoparticles, J. Phys. Chem. Solids, 124 (2019) 73–80.
  30. Y. Chen, W. Long, H. Xu, Efficient removal of Acid Red 18 from aqueous solution by in-situ polymerization of polypyrrolechitosan composites, J. Mol. Liq., 287 (2019) 110888, doi: 10.1016/j.molliq.2019.110888.
  31. L. Chen, T. Yuan, R. Ni, Q. Yue, B. Gao, Multivariate optimization of ciprofloxacin removal by polyvinylpyrrolidone stabilized NZVI/Cu bimetallic particles, Chem. Eng. J., 365 (2019a) 183–192.
  32. D.M.K. Nguyen, T. Imai, T.L.T. Dang, A. Kanno, T. Higuchi, K. Yamamoto, M. Sekine, Response surface method for modeling the removal of carbon dioxide from a simulated gas using water adsorption enhanced with a liquid-film-forming device, J. Environ. Sci., 65 (2018) 116–126.
  33. G.D. Vyavahare, R.G. Gurav, P.P. Jadhav, R.R. Patil, C.B. Aware, J.P. Jadhav, Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity, Chemosphere, 194 (2018) 306–315.
  34. U. Roy, S. Sengupta, P. Banerjee, P. Das, A. Bhowal, S. Datta, Assessment on the decolourization of textile dye (Reactive Yellow) using Pseudomonas sp. immobilized on fly ash: response surface methodology optimization and toxicity evaluation, J. Environ. Manage., 223 (2018) 185–195.
  35. P. Gharbani, Modeling and optimization of reactive yellow 145 dye removal process onto synthesized MnOX-CeO2 using response surface methodology, Colloid Surf., A, 548 (2018) 191–197.
  36. R. Subramaniam, S.K. Ponnusamy, Novel adsorbent from agricultural waste (cashew NUT shell) for methylene blue dye removal: optimization by response surface methodology, Water Resour. Ind., 11 (2015) 64–70.
  37. R.R. Madvaar, M.A. Taher, H. Fazelirad, Synthesis and characterization of magnetic halloysite-iron oxide nanocomposite and its application for naphthol green B removal, Appl. Clay Sci., 137 (2017) 101–106.
  38. S.E. Rizk, M.M. Hamed, Batch sorption of iron complex dye, naphthol green B, from wastewater on charcoal, kaolinite, and tafla, Des. Water Treat., 56 (2015) 1536–1546.
  39. M.F. Attallah, I.M. Ahmed, M.M. Hamed, Treatment of industrial wastewater containing Congo Red and Naphthol Green B using low-cost adsorbent, Environ. Sci. Pollut. Res., 20 (2013) 1106–1116.
  40. Y. Chen, Z. Lin, R. Hao, H. Xu, C. Huang, Rapid adsorption and reductive degradation of Naphthol Green B from aqueous solution by Polypyrrole/Attapulgite composites supported nanoscale zero-valent iron, J. Hazard. Mater., 371 (2019b) 8–17.
  41. F. Zhang, Z. Ni, S. Xia, X. Liu, Q. Wang, Removal of Naphthol Green B from aqueous solution by calcined layered double hydroxides: adsorption property and mechanism studies, Chin. J. Chem., 27 (2009) 1767–1772.
  42. C. Lu, J. Yao, T.S. Knudsen, M. Made, J. Gu, J. Liu, H. Li, Z. Junyang, Degradation of a-nitroso-b-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water, J. Cleaner Prod., 238 (2019) 117942, doi: 10.1016/j.jclepro.2019.117942.
  43. J.S. Clemente, P.M. Fedorak, A review of the occurrence, analyses, toxicity, and biodegradation of naphthenic acids, Chemosphere, 60 (2005) 585–600.
  44. S. Cheng, N. Li, L. Jiang, Y. Li, B. Xu, W. Zhou, Biodegradation of metal complex Naphthol Green B and formation of iron–sulfur nanoparticles by marine bacterium Pseudo alteromonas sp CF10-13, Bioresour. Technol., 273 (2019) 49–55.