References
- J. Schneider, M. Matsuoka, M. Takeuchi, J.L. Zhang,
Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding
TiO2 photocatalysis: mechanisms and materials, Chem. Rev.,
114 (2014) 9919–9986.
- M.J. Hernández Rodríguez, E. Pulido Melián, O. González
Díaz, J. Araña, M. Macías, A. González Orive, J.M. Doña
Rodríguez, Comparison of supported TiO2 catalysts in the
photocatalytic degradation of NOx, J. Mol. Catal. A: Chem.,
413 (2016) 56–66.
- B.M. Pirzada, N.A. Mir, N. Qutub, O. Mehraj, S. Sabir,
M. Muneer, Synthesis, characterization and optimization
of photocatalytic activity of TiO2/ZrO2 nanocomposite
heterostructures, Mater. Sci. Eng. B, 193 (2015) 137–145.
- F.Z. Li, J.S. Zhou, C. Du, W. Li, Y.Z. Wang, G.N. He, Q.Y. He,
Preparation and photocatalytic properties of porous C and N
co-doped TiO2 deposited on brick by a fast, one-step microwave
irradiation method, J. Environ. Sci., 60 (2017) 24–32.
- S. Silvestri, B. Hennemann, N. Zanatta, E.L. Foletto,
Photocatalytic efficiency of TiO2 supported on raw red clay
disks to discolour Reactive red 141, Water Air Soil Pollut.,
229 (2018) doi: 10.1007/s11270-018-3700-x.
- R. Zouzelka, J. Rathousky, Photocatalytic abatement of NOx
pollutants in the air using commercial functional coating
with porous morphology, Appl. Catal., B, 217 (2017) 466–476.
- M. Faraldos, A. Bahamonde, Environmental applications of
titania-graphene photocatalysts, Catal. Today, 285 (2017) 13–28.
- N. Chekir, O. Benhabiles, D. Tassalit, N.A. Laoufi, F. Bentahar,
Photocatalytic degradation of methylene blue in aqueous
suspensions using TiO2 and ZnO, Des. Water Treat., 57 (2016)
6141–6147.
- K.E. O’Shea, D.D. Dionysiou, Advanced oxidation processes
for water treatment, J. Phys. Chem. Lett., 3 (2012) 2112–2113.
- A. Buthiyappan, A.R. Abdul Aziz, W.M.A. Wan Daud, Recent
advances and prospects of catalytic advanced oxidation process
in treating textile effluents, Rev. Chem. Eng., 32 (2016) 1–47,
doi: 10.1515/revce-2015-0034.
- F. Harrelkas, A. Paulo, M.M. Alves, L. El Khadir, O. Zahraa,
M.N. Pons, F.P. van der Zee, Photocatalytic and combined
anaerobic–photocatalytic treatment of textile dyes, Chemosphere,
72 (2008) 1816–1822.
- Z.-A. Mirian, A. Nezamzadeh-Ejhieh, Removal of phenol
content of an industrial wastewater via a heterogeneous
photodegradation process using supported FeO onto
nanoparticles of Iranian clinoptilolite, Des. Water Treat.,
57 (2016) 16483–16494.
- M.D. Hernández-Alonso, F. Fresno, S. Suárez, J.M. Coronado,
Development of alternative photocatalysts to TiO2: Challenges
and opportunities, Energy Environ. Sci., 2 (2009) 1231–1257.
- A.F. Khan, M. Mehmood, S.K. Durrani, M.L. Ali, N.A. Rahim,
Structural and optoelectronic properties of nanostructured
TiO2 thin films with annealing, Mater. Sci. Semicond. Process,
29 (2015) 161–169.
- M. Antonopoulou, E. Evgenidou, D. Lambropoulou,
I. Konstantinou, A review on advanced oxidation processes
for the removal of taste and odor compounds from aqueous
media, Water Res., 53 (2014) 215–234.
- J.O. Tijani, O.O. Fatoba, G. Madzivire, L.F. Petrik, A review of
combined advanced oxidation technologies for the removal
of organic pollutants from water, Water Air Soil Pollut.,
225 (2014), doi: 10.1007/s11270-014-2102-y.
- M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments
in photocatalytic water treatment technology: a review,
Water Res., 44 (2010) 2997–3027.
- M. Faraldos, R. Kropp, M.A. Anderson, K. Sobolev,
Photocatalytic hydrophobic concrete coatings to combat air
pollution, Catal. Today, 259 (2016) 228–236.
- A. Mills, S. Elouali, The nitric oxide ISO photocatalytic reactor
system: measurement of NOx removal activity and capacity,
J. Photochem. Photobiol., A, 305 (2015) 29–36.
- F. Chen, J. Zhao, H. Hidaka, Highly selective deethylation
of Rhodamine B: adsorption and photooxidation pathways
of the dye on the TiO2/SiO2 composite photocatalyst, Int.
J. Photoenergy, 5 (2003) 209–217.
- D.M. Tobaldi, R.C. Pullar, A.F. Gualtieri, G. Otero-Irurueta,
M.K. Singh, M.P. Seabra, J.A. Labrincha, Nitrogen-modified
nano-titania: true phase composition, microstructure and
visible-light induced photocatalytic NOx abatement, J. Solid
State Chem., 231 (2015) 87–100.
- B. Dai, M. Xuan, Y.H. Lv, C.G. Jin, S.L. Ran, Molten salt
synthesis of Bi2WO6 powders and its visible-light photocatalytic
activity, Mater. Res., 22 (2019), doi: 10.1590/1980-5373-MR-2019-0311.
- R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for
environmental photocatalytic applications: a review, Ind. Eng.
Chem. Res., 52 (2013) 3581–3599.
- K. Bourikas, C. Kordulis, A. Lycourghiotis, Titanium dioxide
(anatase and rutile): surface chemistry, liquid–solid interface
chemistry, and scientific synthesis of supported catalysts,
Chem. Rev., 114 (2014) 9754–9823.
- A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide
photocatalysis, J. Photochem. Photobiol., C, 1 (2000) 1–21.
- E. Pakdel, W.A. Daoud, Self-cleaning cotton functionalized
with TiO2/SiO2: focus on the role of silica, J. Colloid Interface
Sci., 401 (2013) 1–7.
- I. Levchuk, M. Sillanpää, C. Guillard, D. Gregori, D. Chateau,
S. Parola, TiO2/SiO2 porous composite thin films: role of TiO2
areal loading and modification with gold nanospheres on
the photocatalytic activity, Appl. Surf. Sci., 383 (2016) 367–374.
- T. Yuranova, R. Mosteo, J. Bandara, D. Laub, J. Kiwi, Selfcleaning
cotton textiles surfaces modified by photoactive
SiO2/TiO2 coating, J. Mol. Catal. A: Chem., 244 (2006) 160–167.
- M. Momeni, H. Saghafian, F. Golestani-Fard, N. Barati,
A. Khanahmadi, Effect of SiO2 addition on photocatalytic
activity, water contact angle and mechanical stability of visible
light activated TiO2 thin films applied on stainless steel by a
sol gel method, Appl. Surf. Sci., 392 (2017) 80–87.
- U. Diebold, The surface science of titanium dioxide, Surf.
Sci. Rep., 48 (2003) 53–229.
- L.D. Borges, J.L. de Macedo, Solid-state dealumination of
zeolite Y: structural characterization and acidity analysis
by calorimetric measurements, Microporous Mesoporous
Mater., 236 (2016) 85–93.
- J. Esmaili-Hafshejani, A. Nezamzadeh-Ejhieh, Increased
photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by
coupling and supporting them onto clinoptilolite nanoparticles
in the degradation of benzophenone aqueous solution,
J. Hazard. Mater., 316 (2016) 194–203.
- A. Corma, H. Garcia, Supramolecular host-guest systems in
zeolites prepared by ship-in-a-bottle synthesis, Eur. J. Inorg.
Chem., 2004 (2004) 1143–1164.
- J.O. Carneiro, S. Azevedo, F. Fernandes, E. Freitas, M. Pereira,
C.J. Tavares, S. Lanceros-Méndez, V. Teixeira, Synthesis of irondoped
TiO2 nanoparticles by ball-milling process: the influence
of process parameters on the structural, optical, magnetic,
and photocatalytic properties, J. Mater. Sci., 49 (2014) 7476–7488.
- M. Neamtu, A. Yediler, I. Siminiceanu, A. Kettrup, Oxidation of
commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes, J. Photochem. Photobiol.,
A, 161 (2003) 87–93.
- R. Díaz, S. Macías, E. Cázares, Fourier transform infrared
spectroscopy and atomic force microscopy studies of a SiO2-TiO2-zeolite matrix for a CuO-CoO catalyst prepared by a
sol–gel method, J. Sol–Gel Sci. Technol., 35 (2005) 13–20.
- B. Xu, J. Ding, L. Feng, Y.Y. Ding, F.Y. Ge, Z.S. Cai, Self-cleaning
cotton fabrics via combination of photocatalytic TiO2 and
superhydrophobic SiO2, Surf. Coat. Technol., 262 (2015) 70–76.
- D.S.S. Padovini, A.G. Magdalena, R.G. Capeli, E. Longo,
C.J. Dalmaschio, A.J. Chiquito, F.M. Pontes, Synthesis and
characterization of ZrO2@SiO2 core-shell nanostructure as
nanocatalyst: application for environmental remediation of
Rhodamine B dye aqueous solution, Mater. Chem. Phys.,
233 (2019) 1–8.
- A.C. Lopes, M.P. Silva, R. Gonçalves, M.F.R. Pereira,
G. Botelho, A.M. Fonseca, S. Lanceros-Mendez, I.C. Neves,
Enhancement of the dielectric constant and thermal properties
of α-poly(vinylidene fluoride)/zeolite nanocomposites,
J. Phys. Chem. C, 114 (2010) 14446–14452.
- J.A. Kaduk, J. Faber, Crystal structure of zeolite Y as a function
of ion exchange, Rigaku J., 12 (1995) 14–34.
- I.C. Neves, G. Botelho, A.V. Machado, P. Rebelo, Catalytic
degradation of polyethylene: an evaluation of the effect
of dealuminated Y zeolites using thermal analysis, Mater.
Chem. Phys., 104 (2007) 5–9.
- W. Lutz, C.H. Rüscher, D. Heidemann, Determination of the
framework and non-framework [SiO2] and [AlO2] species of
steamed and leached faujasite type zeolites: calibration of
IR, NMR, and XRD data by chemical methods, Microporous
Mesoporous Mater., 55 (2002) 193–202.
- A. Nezamzadeh-Ejhieh, E. Shahriari, Photocatalytic decolorization
of methyl green using Fe(II)-o-phenanthroline as supported
onto zeolite Y, J. Ind. Eng. Chem., 20 (2014) 2719–2726.
- R. Díaz, J. Cruz, R. Ocampo, Fourier transform infrared
spectroscopic comparison of Cu, Co/Si-Al-zeolite catalysts
prepared by a combined sol–gel method, Langmuir, 13 (1997)
6861–6863.
- A. Nezamzadeh-Ejhieh, M. Bahrami, Investigation of the
photocatalytic activity of supported ZnO–TiO2 on clinoptilolite
nano-particles towards photodegradation of wastewatercontained
phenol, Des. Water Treat., 55 (2015) 1096–1104.
- M. Bahrami, A. Nezamzadeh-Ejhieh, Effect of supporting and
hybridizing of FeO and ZnO semiconductors onto an Iranian
clinoptilolite nano-particles and the effect of ZnO/FeO ratio in
the solar photodegradation of fish ponds waste water, Mater.
Sci. Semicond. Process., 27 (2014) 833–840.
- S. Landi Jr., J. Carneiro, S. Ferdov, A.M. Fonseca, I.C. Neves,
M. Ferreira, P. Parpot, O.S.G.P. Soares, M.F.R. Pereira,
Photocatalytic degradation of Rhodamine B dye by cotton
textile coated with SiO2-TiO2 and SiO2-TiO2-HY composites,
J. Photochem. Photobiol., A, 346 (2017) 60–69.
- S. Landi Jr., J. Carneiro, O.S.G.P. Soares, M.F.R. Pereira,
A.C. Gomes, A. Ribeiro, A.M. Fonseca, P. Parpot, I.C. Neves,
Photocatalytic performance of N-doped TiO2 nano-SiO2-HY
nanocomposites immobilized over cotton fabrics, J. Mater.
Res. Technol., 8 (2019) 1933–1943.
- S. Landi Jr., J.O. Carneiro, F. Fernandes, P. Parpot, J. Molina,
F. Cases, J. Fernández, J.G. Santos, G.M.B. Soares, V. Teixeira,
A.P. Samantilleke, Functionalization of cotton by RGO/TiO2 to
enhance photodegradation of Rhodamine B under simulated
solar irradiation, Water Air Soil Pollut., 228 (2017) 335, 10.1007/s11270-017-3533-z.
- T. Kuzniatsova, Y.H. Kim, K. Shqau, P.K. Dutta, H. Verweij,
Zeta potential measurements of zeolite Y: application in
homogeneous deposition of particle coatings, Microporous
Mesoporous Mater., 103 (2007) 102–107.
- S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis
under UV/visible light: selected results and related mechanisms
on interfacial charge carrier transfer dynamics, Phys. Chem. A,
115 (2011) 13211–13241.
- C. Shifu, C. Gengyu, The effect of different preparation
conditions on the photocatalytic activity of TiO2·SiO2/beads,
Surf. Coat. Technol., 200 (2006) 3637–3643.
- A. Mahyar, M.A. Behnajady, N. Modirshahla, Characterization
and photocatalytic activity of SiO2-TiO2 mixed oxide
nanoparticles prepared by sol-gel method, Indian J. Chem.,
49A (2010) 1593–1600.
- S. Merouani, O. Hamdaoui, F. Saoudi, M. Chiha, Sonochemical
degradation of Rhodamine B in aqueous phase: effects of
additives, Chem. Eng. J., 158 (2010) 550–557.