References

  1. J. Schneider, M. Matsuoka, M. Takeuchi, J.L. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev., 114 (2014) 9919–9986.
  2. M.J. Hernández Rodríguez, E. Pulido Melián, O. González Díaz, J. Araña, M. Macías, A. González Orive, J.M. Doña Rodríguez, Comparison of supported TiO2 catalysts in the photocatalytic degradation of NOx, J. Mol. Catal. A: Chem., 413 (2016) 56–66.
  3. B.M. Pirzada, N.A. Mir, N. Qutub, O. Mehraj, S. Sabir, M. Muneer, Synthesis, characterization and optimization of photocatalytic activity of TiO2/ZrO2 nanocomposite heterostructures, Mater. Sci. Eng. B, 193 (2015) 137–145.
  4. F.Z. Li, J.S. Zhou, C. Du, W. Li, Y.Z. Wang, G.N. He, Q.Y. He, Preparation and photocatalytic properties of porous C and N co-doped TiO2 deposited on brick by a fast, one-step microwave irradiation method, J. Environ. Sci., 60 (2017) 24–32.
  5. S. Silvestri, B. Hennemann, N. Zanatta, E.L. Foletto, Photocatalytic efficiency of TiO2 supported on raw red clay disks to discolour Reactive red 141, Water Air Soil Pollut., 229 (2018) doi: 10.1007/s11270-018-3700-x.
  6. R. Zouzelka, J. Rathousky, Photocatalytic abatement of NOx pollutants in the air using commercial functional coating with porous morphology, Appl. Catal., B, 217 (2017) 466–476.
  7. M. Faraldos, A. Bahamonde, Environmental applications of titania-graphene photocatalysts, Catal. Today, 285 (2017) 13–28.
  8. N. Chekir, O. Benhabiles, D. Tassalit, N.A. Laoufi, F. Bentahar, Photocatalytic degradation of methylene blue in aqueous suspensions using TiO2 and ZnO, Des. Water Treat., 57 (2016) 6141–6147.
  9. K.E. O’Shea, D.D. Dionysiou, Advanced oxidation processes for water treatment, J. Phys. Chem. Lett., 3 (2012) 2112–2113.
  10. A. Buthiyappan, A.R. Abdul Aziz, W.M.A. Wan Daud, Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents, Rev. Chem. Eng., 32 (2016) 1–47, doi: 10.1515/revce-2015-0034.
  11. F. Harrelkas, A. Paulo, M.M. Alves, L. El Khadir, O. Zahraa, M.N. Pons, F.P. van der Zee, Photocatalytic and combined anaerobic–photocatalytic treatment of textile dyes, Chemosphere, 72 (2008) 1816–1822.
  12. Z.-A. Mirian, A. Nezamzadeh-Ejhieh, Removal of phenol content of an industrial wastewater via a heterogeneous photodegradation process using supported FeO onto nanoparticles of Iranian clinoptilolite, Des. Water Treat., 57 (2016) 16483–16494.
  13. M.D. Hernández-Alonso, F. Fresno, S. Suárez, J.M. Coronado, Development of alternative photocatalysts to TiO2: Challenges and opportunities, Energy Environ. Sci., 2 (2009) 1231–1257.
  14. A.F. Khan, M. Mehmood, S.K. Durrani, M.L. Ali, N.A. Rahim, Structural and optoelectronic properties of nanostructured TiO2 thin films with annealing, Mater. Sci. Semicond. Process, 29 (2015) 161–169.
  15. M. Antonopoulou, E. Evgenidou, D. Lambropoulou, I. Konstantinou, A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media, Water Res., 53 (2014) 215–234.
  16. J.O. Tijani, O.O. Fatoba, G. Madzivire, L.F. Petrik, A review of combined advanced oxidation technologies for the removal of organic pollutants from water, Water Air Soil Pollut., 225 (2014), doi: 10.1007/s11270-014-2102-y.
  17. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  18. M. Faraldos, R. Kropp, M.A. Anderson, K. Sobolev, Photocatalytic hydrophobic concrete coatings to combat air pollution, Catal. Today, 259 (2016) 228–236.
  19. A. Mills, S. Elouali, The nitric oxide ISO photocatalytic reactor system: measurement of NOx removal activity and capacity, J. Photochem. Photobiol., A, 305 (2015) 29–36.
  20. F. Chen, J. Zhao, H. Hidaka, Highly selective deethylation of Rhodamine B: adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst, Int. J. Photoenergy, 5 (2003) 209–217.
  21. D.M. Tobaldi, R.C. Pullar, A.F. Gualtieri, G. Otero-Irurueta, M.K. Singh, M.P. Seabra, J.A. Labrincha, Nitrogen-modified nano-titania: true phase composition, microstructure and visible-light induced photocatalytic NOx abatement, J. Solid State Chem., 231 (2015) 87–100.
  22. B. Dai, M. Xuan, Y.H. Lv, C.G. Jin, S.L. Ran, Molten salt synthesis of Bi2WO6 powders and its visible-light photocatalytic activity, Mater. Res., 22 (2019), doi: 10.1590/1980-5373-MR-2019-0311.
  23. R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: a review, Ind. Eng. Chem. Res., 52 (2013) 3581–3599.
  24. K. Bourikas, C. Kordulis, A. Lycourghiotis, Titanium dioxide (anatase and rutile): surface chemistry, liquid–solid interface chemistry, and scientific synthesis of supported catalysts, Chem. Rev., 114 (2014) 9754–9823.
  25. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol., C, 1 (2000) 1–21.
  26. E. Pakdel, W.A. Daoud, Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica, J. Colloid Interface Sci., 401 (2013) 1–7.
  27. I. Levchuk, M. Sillanpää, C. Guillard, D. Gregori, D. Chateau, S. Parola, TiO2/SiO2 porous composite thin films: role of TiO2 areal loading and modification with gold nanospheres on the photocatalytic activity, Appl. Surf. Sci., 383 (2016) 367–374.
  28. T. Yuranova, R. Mosteo, J. Bandara, D. Laub, J. Kiwi, Selfcleaning cotton textiles surfaces modified by photoactive SiO2/TiO2 coating, J. Mol. Catal. A: Chem., 244 (2006) 160–167.
  29. M. Momeni, H. Saghafian, F. Golestani-Fard, N. Barati, A. Khanahmadi, Effect of SiO2 addition on photocatalytic activity, water contact angle and mechanical stability of visible light activated TiO2 thin films applied on stainless steel by a sol gel method, Appl. Surf. Sci., 392 (2017) 80–87.
  30. U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep., 48 (2003) 53–229.
  31. L.D. Borges, J.L. de Macedo, Solid-state dealumination of zeolite Y: structural characterization and acidity analysis by calorimetric measurements, Microporous Mesoporous Mater., 236 (2016) 85–93.
  32. J. Esmaili-Hafshejani, A. Nezamzadeh-Ejhieh, Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution, J. Hazard. Mater., 316 (2016) 194–203.
  33. A. Corma, H. Garcia, Supramolecular host-guest systems in zeolites prepared by ship-in-a-bottle synthesis, Eur. J. Inorg. Chem., 2004 (2004) 1143–1164.
  34. J.O. Carneiro, S. Azevedo, F. Fernandes, E. Freitas, M. Pereira, C.J. Tavares, S. Lanceros-Méndez, V. Teixeira, Synthesis of irondoped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties, J. Mater. Sci., 49 (2014) 7476–7488.
  35. M. Neamtu, A. Yediler, I. Siminiceanu, A. Kettrup, Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes, J. Photochem. Photobiol., A, 161 (2003) 87–93.
  36. R. Díaz, S. Macías, E. Cázares, Fourier transform infrared spectroscopy and atomic force microscopy studies of a SiO2-TiO2-zeolite matrix for a CuO-CoO catalyst prepared by a sol–gel method, J. Sol–Gel Sci. Technol., 35 (2005) 13–20.
  37. B. Xu, J. Ding, L. Feng, Y.Y. Ding, F.Y. Ge, Z.S. Cai, Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2, Surf. Coat. Technol., 262 (2015) 70–76.
  38. D.S.S. Padovini, A.G. Magdalena, R.G. Capeli, E. Longo, C.J. Dalmaschio, A.J. Chiquito, F.M. Pontes, Synthesis and characterization of ZrO2@SiO2 core-shell nanostructure as nanocatalyst: application for environmental remediation of Rhodamine B dye aqueous solution, Mater. Chem. Phys., 233 (2019) 1–8.
  39. A.C. Lopes, M.P. Silva, R. Gonçalves, M.F.R. Pereira, G. Botelho, A.M. Fonseca, S. Lanceros-Mendez, I.C. Neves, Enhancement of the dielectric constant and thermal properties of α-poly(vinylidene fluoride)/zeolite nanocomposites, J. Phys. Chem. C, 114 (2010) 14446–14452.
  40. J.A. Kaduk, J. Faber, Crystal structure of zeolite Y as a function of ion exchange, Rigaku J., 12 (1995) 14–34.
  41. I.C. Neves, G. Botelho, A.V. Machado, P. Rebelo, Catalytic degradation of polyethylene: an evaluation of the effect of dealuminated Y zeolites using thermal analysis, Mater. Chem. Phys., 104 (2007) 5–9.
  42. W. Lutz, C.H. Rüscher, D. Heidemann, Determination of the framework and non-framework [SiO2] and [AlO2] species of steamed and leached faujasite type zeolites: calibration of IR, NMR, and XRD data by chemical methods, Microporous Mesoporous Mater., 55 (2002) 193–202.
  43. A. Nezamzadeh-Ejhieh, E. Shahriari, Photocatalytic decolorization of methyl green using Fe(II)-o-phenanthroline as supported onto zeolite Y, J. Ind. Eng. Chem., 20 (2014) 2719–2726.
  44. R. Díaz, J. Cruz, R. Ocampo, Fourier transform infrared spectroscopic comparison of Cu, Co/Si-Al-zeolite catalysts prepared by a combined sol–gel method, Langmuir, 13 (1997) 6861–6863.
  45. A. Nezamzadeh-Ejhieh, M. Bahrami, Investigation of the photocatalytic activity of supported ZnO–TiO2 on clinoptilolite nano-particles towards photodegradation of wastewatercontained phenol, Des. Water Treat., 55 (2015) 1096–1104.
  46. M. Bahrami, A. Nezamzadeh-Ejhieh, Effect of supporting and hybridizing of FeO and ZnO semiconductors onto an Iranian clinoptilolite nano-particles and the effect of ZnO/FeO ratio in the solar photodegradation of fish ponds waste water, Mater. Sci. Semicond. Process., 27 (2014) 833–840.
  47. S. Landi Jr., J. Carneiro, S. Ferdov, A.M. Fonseca, I.C. Neves, M. Ferreira, P. Parpot, O.S.G.P. Soares, M.F.R. Pereira, Photocatalytic degradation of Rhodamine B dye by cotton textile coated with SiO2-TiO2 and SiO2-TiO2-HY composites, J. Photochem. Photobiol., A, 346 (2017) 60–69.
  48. S. Landi Jr., J. Carneiro, O.S.G.P. Soares, M.F.R. Pereira, A.C. Gomes, A. Ribeiro, A.M. Fonseca, P. Parpot, I.C. Neves, Photocatalytic performance of N-doped TiO2 nano-SiO2-HY nanocomposites immobilized over cotton fabrics, J. Mater. Res. Technol., 8 (2019) 1933–1943.
  49. S. Landi Jr., J.O. Carneiro, F. Fernandes, P. Parpot, J. Molina, F. Cases, J. Fernández, J.G. Santos, G.M.B. Soares, V. Teixeira, A.P. Samantilleke, Functionalization of cotton by RGO/TiO2 to enhance photodegradation of Rhodamine B under simulated solar irradiation, Water Air Soil Pollut., 228 (2017) 335, 10.1007/s11270-017-3533-z.
  50. T. Kuzniatsova, Y.H. Kim, K. Shqau, P.K. Dutta, H. Verweij, Zeta potential measurements of zeolite Y: application in homogeneous deposition of particle coatings, Microporous Mesoporous Mater., 103 (2007) 102–107.
  51. S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, Phys. Chem. A, 115 (2011) 13211–13241.
  52. C. Shifu, C. Gengyu, The effect of different preparation conditions on the photocatalytic activity of TiO2·SiO2/beads, Surf. Coat. Technol., 200 (2006) 3637–3643.
  53. A. Mahyar, M.A. Behnajady, N. Modirshahla, Characterization and photocatalytic activity of SiO2-TiO2 mixed oxide nanoparticles prepared by sol-gel method, Indian J. Chem., 49A (2010) 1593–1600.
  54. S. Merouani, O. Hamdaoui, F. Saoudi, M. Chiha, Sonochemical degradation of Rhodamine B in aqueous phase: effects of additives, Chem. Eng. J., 158 (2010) 550–557.