References

  1. UNESCO, The United Nations World Water Development Report 2019: Leaving No One Behind, 75352 Paris 07 SP, France, 2019.
  2. R.W. Hofste, P. Reig, L. Schleifer, 17 Countries, Home to One-Quarter of the World’s Population, Face Extremely High Water Stress, World Resour. Inst. (2019) N/A. https://www.wri.org/ print/65485.
  3. M.W. Shahzad, M. Burhan, L. Ang, K.C. Ng, Energy-water-environment nexus underpinning future desalination sustainability, Desalination, 413 (2017) 52–64.
  4. D. Zarzo, D. Prats, Desalination and energy consumption. What can we expect in the near future?, Desalination, 427 (2018) 1–9.
  5. I. Ndiaye, S. Vaudreuil, T. Bounahmidi, Forward osmosis process: state-of-the-art of membranes, Sep. Purif. Rev., 50 (2019) 1–21.
  6. I. Chaoui, S. Abderafi, S. Vaudreuil, T. Bounahmidi, Water desalination by forward osmosis: draw solutes and recovery methods–review, Environ. Technol. Rev., 8 (2019) 25–46.
  7. C. Klaysom, T.Y. Cath, T. Depuydt, I.F.J. Vankelecom, Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply, Chem. Soc. Rev., 42 (2013) 6959–6989.
  8. S.S. Manickam, J.R. McCutcheon, Understanding mass transfer through asymmetric membranes during forward osmosis: a historical perspective and critical review on measuring structural parameter with semi-empirical models and characterization approaches, Desalination, 421 (2017) 110–126.
  9. T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281 (2006) 70–87.
  10. T.S. Chung, S. Zhang, K.Y. Wang, J. Su, M.M. Ling, Forward osmosis processes: yesterday, today and tomorrow, Desalination, 287 (2012) 78–81.
  11. M. Qasim, N.A. Darwish, S. Sarp, N. Hilal, Water desalination by forward (direct) osmosis phenomenon: a comprehensive review, Desalination, 374 (2015) 47–69.
  12. H.Q. Liang, W.S. Hung, H.H. Yu, C.C. Hu, K.R. Lee, J.Y. Lai, Z.K. Xu, Forward osmosis membranes with unprecedented water flux, J. Membr. Sci., 529 (2017) 47–54.
  13. M. Rastgar, A. Shakeri, A. Bozorg, H. Salehi, V. Saadattalab, Impact of nanoparticles surface characteristics on pore structure and performance of forward osmosis membranes, Desalination. 421 (2017) 179–189.
  14. W. Suwaileh, N. Pathak, H. Shon, N. Hilal, Forward osmosis membranes and processes : a comprehensive review of research trends and future outlook, Desalination, 485 (2020) 114455. https://doi.org/10.1016/j.desal.2020.114455.
  15. Y. Yu, Q.Y. Wu, H.Q. Liang, L. Gu, Z.K. Xu, Novel thin film composite membranes supported by cellulose triacetate porous substrates for high-performance forward osmosis, J. Membr. Sci., 492 (2015) 209–219.
  16. M. Zhang, W. Jin, F. Yang, M. Duke, Y. Dong, C.Y. Tang, Engineering a Nanocomposite Interlayer for a Novel Ceramic-Based Forward Osmosis Membrane with Enhanced Performance, Environ. Sci. Technol., 54 (2020) 7715–7724.
  17. X. Zhao, J. Li, C. Liu, A novel TFC-type FO membrane with inserted sublayer of carbon nanotube networks exhibiting the improved separation performance, Desalination, 413 (2017) 176–183.
  18. P.M. Pardeshi, A.K. Mungray, A.A. Mungray, Polyvinyl chloride and layered double hydroxide composite as a novel substrate material for the forward osmosis membrane, Desalination, 421 (2017) 149–159.
  19. M. Tian, Y.N. Wang, R. Wang, Synthesis and characterization of novel high-performance TFN FO membranes with nanofibrous substrate reinforced by functionalized carbon nanotubes, Desalination, 370 (2015) 79–86.
  20. A. Tiraferri, N.Y. Yip, A.P. Straub, S. Romero-Vargas Castrillon, M. Elimelech, A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes, J. Membr. Sci. 444 (2013) 523–538.
  21. Y. Wang, K. Goh, X. Li, L. Setiawan, R. Wang, Membranes and processes for forward osmosis-based desalination: Recent advances and future prospects, Desalination, 434 (2018) 81–99.
  22. W.A. Suwaileh, D.J. Johnson, S. Sarp, N. Hilal, Advances in forward osmosis membranes: Altering the sub-layer structure via recent fabrication and chemical modification approaches, Desalination, 436 (2018) 176–201.
  23. Y. Cai, X.M. Hu, A critical review on draw solutes development for forward osmosis, Desalination, 391 (2016) 16–29.
  24. D.J. Johnson, W.A. Suwaileh, A.W. Mohammed, N. Hilal, Osmotic’s potential: An overview of draw solutes for forward osmosis, Desalination, 434 (2018) 100–120.
  25. S. Loeb, Production of energy from concentrated brines by pressure-retarded osmosis. I. Preliminary technical and economic correlations, J. Membr. Sci. 1 (1976) 49–63.
  26. S. Loeb, S. Sourirajan, High Flow Porous Membranes For Separating Water From Saline Solutions, 1964.
  27. M.C. Porter, Handbook of Industrial Membrane Technology, Westwood, New Jersey, U.S.A., 1990.
  28. S. Zhang, K.Y. Wang, T.S. Chung, H. Chen, Y.C. Jean, G. Amy, Well-constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer, J. Membr. Sci., 360 (2010) 522–535.
  29. W.A. Phillip, J.D. Schiffman, M. Elimelech, High performance thin-film membrane, Environ. Sci. Technol., 44 (2010) 3812–3818.
  30. J.R. McCutcheon, R.L. McGinnis, M. Elimelech, A novel ammonia-carbon dioxide forward (direct) osmosis desalination process, Desalination, 174 (2005) 1–11.
  31. Oasys Water Inc., Oasys Water commercialises FO membrane technology, Membr. Technol., 2010 (2010) 1–16.
  32. A.M. Awad, R. Jalab, J. Minier-Matar, S. Adham, M.S. Nasser, S.J. Judd, The status of forward osmosis technology implementation, Desalination, 461 (2019) 10–21
  33. A. Tiraferri, Y. Kang, E.P. Giannelis, M. Elimelech, Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles, ACS Appl. Mater. Interfaces, 4 (2012) 5044–5053.
  34. X. Liu, H.Y. Ng, Fabrication of layered silica-polysulfone mixed matrix substrate membrane for enhancing performance of thin-film composite forward osmosis membrane, J. Membr. Sci., 481 (2015) 148–163.
  35. Z.X. Low, Q. Liu, E. Shamsaei, X. Zhang, H. Wang, Preparation and characterization of thin-film composite membrane with nanowire-modified support for forward osmosis process, Membranes (Basel), 5 (2015) 136–149.
  36. Y. Yu, Q.Y. Wu, H.Q. Liang, L. Gu, Z.K. Xu, Preparation and characterization of cellulose triacetate membranes via thermally induced phase separation, J. Appl. Polym. Sci., 134 (2017) 1–10.
  37. Q.Y. Wu, X.Y. Xing, Y. Yu, L. Gu, Z.K. Xu, Novel thin film composite membranes supported by cellulose triacetate porous substrates for high-performance forward osmosis, Polymer (Guildf), 153 (2018) 150–160.
  38. N.N. Bui, M.L. Lind, E.M. V Hoek, J.R. McCutcheon, Electrospun nanofiber supported thin film composite membranes for engineered osmosis, J. Membr. Sci., 385–386 (2011) 10–19.
  39. M. Tian, C. Qiu, Y. Liao, S. Chou, R. Wang, Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates, Sep. Purif. Technol., 118 (2013) 727–736.
  40. L. Huang, J.T. Arena, J.R. Mccutcheon, Author’s Accepted Manuscript Surface Modified PVDF Nanofiber Supported Thin Film Composite Membranes for Forward Osmosis, (2015). https://doi.org/10.1016/j.memsci.2015.10.030.
  41. W. Xie, G.M. Geise, B.D. Freeman, H.S. Lee, G. Byun, J.E. McGrath, Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine, J. Membr. Sci., 403–404 (2012) 152–161.
  42. R. Wang, L. Shi, C.Y. Tang, S. Chou, C. Qiu, A.G. Fane, Characterization of novel forward osmosis hollow fiber membranes, J. Membr. Sci., 355 (2010) 158–167.
  43. J.Y. Lee, S. Qi, X. Liu, Y. Li, F. Huo, C.Y. Tang, Synthesis and characterization of silica gel-polyacrylonitrile mixed matrix forward osmosis membranes based on layer-by-layer assembly, Sep. Purif. Technol., 124 (2014) 207–216.
  44. C. Liu, X. Lei, L. Wang, J. Jia, X. Liang, X. Zhao, H. Zhu, Investigation on the removal performances of heavy metal ions with the layer-by-layer assembled forward osmosis membranes, Chem. Eng. J., 327 (2017) 60–70.
  45. K.Y. Wang, T.S. Chung, J.J. Qin, Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process, J. Membr. Sci., 300 (2007) 6–12.
  46. K.Y. Wang, Q. Yang, T.S. Chung, R. Rajagopalan, Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall, Chem. Eng. Sci., 64 (2009) 1577–1584.
  47. Q. Yang, K.Y. Wang, T.S. Chung, Dual-layer hollow fibers with enhanced flux as novel forward osmosis membranes for water production, Environ. Sci. Technol., 43 (2009) 2800–2805.
  48. K.Y. Wang, R.C. Ong, T.S. Chung, Double-skinned forward osmosis membranes for reducing internal concentration polarization within the porous sublayer, Ind. Eng. Chem. Res., 49 (2010) 4824–4831.
  49. S. Zhang, K.Y. Wang, T.S. Chung, Y.C. Jean, H. Chen, Molecular design of the cellulose ester-based forward osmosis membranes for desalination, Chem. Eng. Sci., 66 (2011) 2008–2018.
  50. J. Su, Q. Yang, J.F. Teo, T. Chung, Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes, J. Membr. Sci., 355 (2010) 36–44.
  51. M. Sairam, E. Sereewatthanawut, K. Li, A. Bismarck, A.G. Livingston, Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis- Desalination using MgSO4 draw solution, Desalination, 273 (2011) 299–307.
  52. R.C. Ong, T.S. Chung, B.J. Helmer, J.S. De Wit, Novel cellulose esters for forward osmosis membranes, Ind. Eng. Chem. Res., 51 (2012) 16135–16145.
  53. H.E. Kwon, S.J. Kwon, S.J. Park, M.G. Shin, S.H. Park, M.S. Park, H. Park, J.H. Lee, High performance polyacrylonitrilesupported forward osmosis membranes prepared via aromatic solvent-based interfacial polymerization, Sep. Purif. Technol., 212 (2019) 449–457.
  54. L. Huang, J.T. Arena, J.R. McCutcheon, Surface modified PVDF nanofiber supported thin film composite membranes for forward osmosis, J. Membr. Sci., 499 (2016) 352–360.
  55. M.J. Park, R.R. Gonzales, A. Abdel-Wahab, S. Phuntsho, H.K. Shon, Hydrophilic polyvinyl alcohol coating on hydrophobic electrospun nanofiber membrane for high performance thin film composite forward osmosis membrane, Desalination, 426 (2018) 50–59.
  56. Z. Liang, Y. Yun, M. Wang, G. Liu, P. Lu, W. Yang, C. Li, Performance evaluation of interfacial polymerisation-fabricated aquaporin-based biomimetic membranes in forward osmosis, RSC Adv., 9 (2019) 10715–10726.
  57. D. Emadzadeh, W.J. Lau, T. Matsuura, M. Rahbari-Sisakht, A.F. Ismail, A novel thin film composite forward osmosis membrane prepared from PSf-TiO2 nanocomposite substrate for water desalination, Chem. Eng. J., 237 (2014) 70–80.
  58. N. Niksefat, M. Jahanshahi, A. Rahimpour, The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application, Desalination, 343 (2014) 140–146.
  59. M. Obaid, Z.K. Ghouri, O.A. Fadali, K.A. Khalil, A.A. Almajid, N.A.M. Barakat, Amorphous SiO2 NP-incorporated poly(vinylidene fluoride) electrospun nanofiber membrane for high flux forward osmosis desalination, ACS Appl. Mater. Interfaces, 8 (2016) 4561–4574.
  60. M. Ghanbari, D. Emadzadeh, W.J. Lau, S.O. Lai, T. Matsuura, A.F. Ismail, Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination, Desalination, 358 (2015) 33–41.
  61. T. Ni, Q. Ge, Highly hydrophilic thin-film composition forward osmosis (FO) membranes functionalized with aniline sulfonate/bisulfonate for desalination, J. Membr. Sci., 564 (2018) 732–741.
  62. S. Qi, W. Li, Y. Zhao, N. Ma, J. Wei, T.W. Chin, C.Y. Tang, Influence of the properties of layer-by-layer active layers on forward osmosis performance, J. Membr. Sci., 423–424 (2012) 536–542.
  63. M. Li, V. Karanikola, X. Zhang, L. Wang, M. Elimelech, A selfstanding, support-free membrane for forward osmosis with no internal concentration polarization, Environ. Sci. Technol. Lett., 5 (2018) 266–271.
  64. H. Salehi, A. Shakeri, H. Mahdavi, R.G.H. Lammertink, Improved performance of thin-film composite forward osmosis membrane with click modified polysulfone substrate, Desalination, 496 (2020) 114731. https://doi.org/10.1016/j. desal.2020.114731.
  65. K.L. Lee, R.W. Baker, H.K. Lonsdale, Membranes for power generation by pressure-retarded osmosis, J. Membr. Sci., 8 (1981) 141–171.
  66. J.R. McCutcheon, M. Elimelech, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis, J. Membr. Sci., 284 (2006) 237–247.
  67. N.Y. Yip, A. Tiraferri, W.A. Phillip, J.D. Schiffman, L.A. Hoover, Y.C. Kim, M. Elimelech, Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients, Environ. Sci. Technol., 45 (2011) 4360–4369.
  68. A. Achilli, T.Y. Cath, A.E. Childress, Power generation with pressure retarded osmosis: an experimental and theoretical investigation, J. Membr. Sci., 343 (2009) 42–52.
  69. S. Lim, M.J. Park, S. Phuntsho, L.D. Tijing, G.M. Nisola, W.G. Shim, W.J. Chung, H.K. Shon, Dual-layered nanocomposite substrate membrane based on polysulfone/graphene oxide for mitigating internal concentration polarization in forward osmosis, Polymer (Guildf), 110 (2017) 36–48.
  70. P. Xiao, L.D. Nghiem, Y. Yin, X.M. Li, M. Zhang, G. Chen, J. Song, T. He, A sacrificial-layer approach to fabricate polysulfone support for forward osmosis thin-film composite membranes with reduced internal concentration polarisation, J. Membr. Sci., 481 (2015) 106–114.
  71. C. Boo, Y.F. Khalil, M. Elimelech, Performance evaluation of trimethylamine-carbon dioxide thermolytic draw solution for engineered osmosis, J. Membr. Sci., 473 (2015) 302–309.
  72. S.F. Pan, Y. Dong, Y.M. Zheng, L. Bin Zhong, Z.H. Yuan, Selfsustained hydrophilic nanofiber thin film composite forward osmosis membranes: preparation, characterization and application for simulated antibiotic wastewater treatment, J. Membr. Sci., 523 (2017) 205–215.
  73. W.A. Phillip, J.S. Yong, M. Elimelech, Reverse draw solute permeation in forward osmosis: modeling and experiments, Environ. Sci. Technol., 44 (2010) 5170–5176.
  74. C. Suh, S. Lee, Modeling reverse draw solute flux in forward osmosis with external concentration polarization in both sides of the draw and feed solution, J. Membr. Sci., 427 (2013) 365–374.
  75. K. Madsen, H.B. Nielsen, O. Tingleff, Methods For Non-Linear Least Squares Problems (2nd ed.), Informatics and Mathematical Modelling Technical University of Denmark, Richard Petersens Plads, Buildings 321, DK-2800 Kgs. Lyngby, 2004, p. 60.
  76. L. Chekli, S. Phuntsho, H.K. Shon, S. Vigneswaran, J. Kandasamy, A. Chanan, A review of draw solutes in forward osmosis process and their use in modern applications, Desal. Water Treat., 43 (2012) 167–184.
  77. W.C.L. Lay, J. Zhang, C. Tang, R. Wang, Y. Liu, A.G. Fane, Analysis of salt accumulation in a forward osmosis system, Sep. Sci. Technol., 47 (2012) 1837–1848.
  78. R.R. Gonzales, M.J. Park, L. Tijing, D.S. Han, S. Phuntsho, H.K. Shon, Modification of nanofiber support layer for thin film composite forward osmosis membranes via layer-bylayer polyelectrolyte deposition, Membranes (Basel), 8 (2018) 1–15.
  79. G. Chen, R. Liu, H.K. Shon, Y. Wang, J. Song, X.M. Li, T. He, Open porous hydrophilic supported thin-film composite forward osmosis membrane via co-casting for treatment of high-salinity wastewater, Desalination, 405 (2017) 76–84.
  80. Z. Zhou, J.Y. Lee, T.S. Chung, Thin film composite forwardosmosis membranes with enhanced internal osmotic pressure for internal concentration polarization reduction, Chem. Eng. J., 249 (2014) 236–245.
  81. H. Salehi, A. Shakeri, M. Rastgar, Carboxylic polyethersulfone: a novel pH-responsive modifier in support layer of forward osmosis membrane, J. Membr. Sci., 548 (2018) 641–653.
  82. D. Emadzadeh, W.J. Lau, T. Matsuura, A.F. Ismail, M. Rahbari-Sisakht, Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization, J. Membr. Sci., 449 (2014) 74–85.
  83. X. Fan, Y. Liu, X. Quan, A novel reduced graphene oxide/carbon nanotube hollow fiber membrane with high forward osmosis performance, Desalination, (2019) 451 117–124.
  84. P. Lu, S. Liang, L. Qiu, Y. Gao, Q. Wang, Thin film nanocomposite forward osmosis membranes based on layered double hydroxide nanoparticles blended substrates, J. Membr. Sci., 504 (2016) 196–205.
  85. D. Emadzadeh, W.J. Lau, M. Rahbari-Sisakht, H. Ilbeygi, D. Rana, T. Matsuura, A.F. Ismail, Synthesis, modification and optimization of titanate nanotubes-polyamide thin film nanocomposite (TFN) membrane for forward osmosis (FO) application, Chem. Eng. J., 281 (2015) 243–251.
  86. M. Tian, Y.N. Wang, R. Wang, A.G. Fane, Synthesis and characterization of thin film nanocomposite forward osmosis membranes supported by silica nanoparticle incorporated nanofibrous substrate, Desalination, 401 (2017) 142–150.
  87. M. Yasukawa, S. Mishima, Y. Tanaka, T. Takahashi, H. Matsuyama, Thin-film composite forward osmosis membrane with high water flux and high pressure resistance using a thicker void-free polyketone porous support, Desalination, 402 (2017) 1–9.
  88. A.K. Ghosh, E.M.V. Hoek, Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes, J. Membr. Sci., 336 (2009) 140–148.
  89. M. Shibuya, M.J. Park, S. Lim, S. Phuntsho, H. Matsuyama, H.K. Shon, Novel CA/PVDF nanofiber supports strategically designed via coaxial electrospinning for high performance thin-film composite forward osmosis membranes for desalination, Desalination, 445 (2018) 63–74.
  90. A. Achilli, T.Y. Cath, A.E. Childress, Selection of inorganicbased draw solutions for forward osmosis applications, J. Membr. Sci., 364 (2010) 233–241.
  91. Y. Choi, H. Cho, Y. Shin, Y. Jang, S. Lee, Economic evaluation of a hybrid desalination system combining forward and reverse osmosis, Membranes (Basel), 6 (2015). https://doi.org/10.3390/ membranes6010003.
  92. G. Blandin, A.R.D. Verliefde, C.Y. Tang, P. Le-Clech, Opportunities to reach economic sustainability in forward osmosis-reverse osmosis hybrids for seawater desalination, Desalination, 363 (2015) 26–36.
  93. L. Xia, M.F. Andersen, C. Hélix-Nielsen, J.R. McCutcheon, Novel commercial aquaporin flat-sheet membrane for forward osmosis, Ind. Eng. Chem. Res., 56 (2017) 11919–11925.
  94. Y.H. Pan, Q.Y. Zhao, L. Gu, Q.Y. Wu, Thin film nanocomposite membranes based on imologite nanotubes blended substrates for forward osmosis desalination, Desalination, 421 (2017) 160–168.
  95. H. Guo, Z. Yao, J. Wang, Z. Yang, X. Ma, C.Y. Tang, Polydopamine coating on a thin film composite forward osmosis membrane for enhanced mass transport and antifouling performance, J. Membr. Sci., 551 (2018) 234–242.
  96. A.L. Ohland, V.M.M. Salim, C.P. Borges, Nanocomposite membranes for osmotic processes: incorporation of functionalized hydroxyapatite in porous substrate and in selective layer, Desalination, 463 (2019) 23–31.
  97. G. Han, T.S. Chung, M. Toriida, S. Tamai, Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination, J. Membr. Sci., 423–424 (2012) 543–555.
  98. Y. Kim, J.H. Lee, Y.C. Kim, K.H. Lee, I.S. Park, S.J. Park, Operation and simulation of pilot-scale forward osmosis desalination with ammonium bicarbonate, Chem. Eng. Res. Des., 94 (2015) 390–395.
  99. M. Amini, M. Jahanshahi, A. Rahimpour, Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes, J. Membr. Sci., 435 (2013) 233–241.
  100. S. Shokrollahzadeh, S. Tajik, Fabrication of thin film composite forward osmosis membrane using electrospun polysulfone/ polyacrylonitrile blend nanofibers as porous substrate, Desalination, 425 (2018) 68–76.
  101. R. Wei, S. Zhang, Y. Cui, R.C. Ong, T.S. Chung, B.J. Helmer, J.S. de Wit, Highly permeable forward osmosis (FO) membranes for high osmotic pressure but viscous draw solutes, J. Membr. Sci., 496 (2015) 132–141.
  102. J. Ren, J.R. McCutcheon, A new commercial biomimetic hollow fiber membrane for forward osmosis, Desalination, 442 (2018) 44–50.
  103. P. Nasr, H. Sewilam, Investigating fertilizer drawn forward osmosis process for groundwater desalination for irrigation in Egypt, Desal. Water Treat., 57 (2016) 26932–26942.
  104. J.T. Arena, S.S. Manickam, K.K. Reimund, P. Brodskiy, J.R. McCutcheon, Characterization and performance relationships for a commercial thin film composite membrane in forward osmosis Desalination and Pressure Retarded Osmosis, Ind. Eng. Chem. Res., 54 (2015) 11393–11403.
  105. K.L. Hickenbottom, J. Vanneste, M. Elimelech, T.Y. Cath, Assessing the current state of commercially available membranes and spacers for energy production with pressure retarded osmosis, Desalination, 389 (2016) 108–118.
  106. H.T. Madsen, S.S. Nissen, J. Muff, E.G. Søgaard, Pressure retarded osmosis from hypersaline solutions: investigating commercial FO membranes at high pressures, Desalination, 420 (2017) 183–190.
  107. X. Song, Z. Liu, D.D. Sun, Nano gives the answer: Breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate, Adv. Mater., 23 (2011) 3256–3260.
  108. N.N. Bui, J.R. McCutcheon, Nanoparticle-embedded nanofibers in highly permselective thin-film nanocomposite membranes for forward osmosis, J. Membr. Sci., 518 (2016) 338–346.
  109. M. Obaid, H.O. Mohamed, A.S. Yasin, O.A. Fadali, K.A. Khalil, T. Kim, N.A.M. Barakat, A novel strategy for enhancing the electrospun PVDF support layer of thin-film composite forward osmosis membranes, RSC Adv., 6 (2016) 102762–102772.
  110. G.R. Xu, J.N. Wang, C.J. Li, Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations, Desalination, 328 (2013) 83–100.
  111. D.L. Shaffer, H. Jaramillo, S. Romero-Vargas Castrillón, X. Lu, M. Elimelech, Post-fabrication modification of forward osmosis membranes with a poly(ethylene glycol) block copolymer for improved organic fouling resistance, J. Membr. Sci., 490 (2015) 209–219.
  112. L. Shen, X. Zhang, J. Zuo, Y. Wang, Performance enhancement of TFC FO membranes with polyethyleneimine modification and post-treatment, J. Membr. Sci., 534 (2017) 46–58.
  113. Y. Wang, X. Li, C. Cheng, Y. He, J. Pan, T. Xu, Second interfacial polymerization on polyamide surface using aliphatic diamine with improved performance of TFC FO membranes, J. Membr. Sci., 498 (2016) 30–38.
  114. M. Mohammadifakhr, J. De Grooth, A. Kemperman, E. Roesink, Forward osmosis : A critical review, Processes, (2020). https://doi.org/10.3390/pr8040404.
  115. S.J. Shi, Y.H. Pan, S.F. Wang, Z.W. Dai, L. Gu, Q.Y. Wu, Aluminosilicate nanotubes embedded polyamide thin film nanocomposite forward osmosis membranes with simultaneous enhancement of water permeability and selectivity, Polymers (Basel), 11 (2019). https://doi.org/10.3390/ polym11050879.
  116. M. Perry, S.U. Madsen, T. Jørgensen, S. Braekevelt, K. Lauritzen, C. Hélix-Nielsen, Challenges in commercializing biomimetic membranes, Membranes (Basel), 5 (2015) 685–701.
  117. S. Chou, L. Shi, R. Wang, C.Y. Tang, C. Qiu, A.G. Fane, Characteristics and potential applications of a novel forward osmosis hollow fiber membrane, Desalination, 261 (2010) 365–372.
  118. J. Wei, C. Qiu, C.Y. Tang, R. Wang, A.G. Fane, Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes, J. Membr. Sci., 372 (2011) 292–302.
  119. N. Widjojo, T.S. Chung, M. Weber, C. Maletzko, V. Warzelhan, The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes, J. Membr. Sci., 383 (2011) 214–223.
  120. Y. Yu, S. Seo, I.C. Kim, S. Lee, Nanoporous polyethersulfone (PES) membrane with enhanced flux applied in forward osmosis process, J. Membr. Sci., 375 (2011) 63–68.
  121. P. Sukitpaneenit, T.S. Chung, High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production, Environ. Sci. Technol., 46 (2012) 7358–7365.
  122. N. Ma, J. Wei, R. Liao, C.Y. Tang, Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis, J. Membr. Sci., 405–406 (2012) 149–157.
  123. Y.H. Cho, J. Han, S. Han, M.D. Guiver, H.B. Park, Polyamide thin-film composite membranes based on carboxylated polysulfone microporous support membranes for forward osmosis, J. Membr. Sci., 445 (2013) 220–227.
  124. N. Widjojo, T.S. Chung, M. Weber, C. Maletzko, V. Warzelhan, A sulfonated polyphenylenesulfone (sPPSU) as the supporting substrate in thin film composite (TFC) membranes with enhanced performance for forward osmosis (FO), Chem. Eng. J., 220 (2013) 15–23.
  125. A. Soroush, W. Ma, Y. Silvino, M.S. Rahaman, Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets, Environ. Sci. Nano, 2 (2015) 395–405.
  126. S.B. Kwon, J.S. Lee, S.J. Kwon, S.T. Yun, S. Lee, J.H. Lee, Molecular layer-by-layer assembled forward osmosis membranes, J. Membr. Sci., 488 (2015) 111–120.
  127. M.J. Park, S. Phuntsho, T. He, G.M. Nisola, L.D. Tijing, X.M. Li, G. Chen, W.J. Chung, H.K. Shon, Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes, J. Membr. Sci., 493 (2015) 496–507.
  128. Y. Wang, R. Ou, H. Wang, T. Xu, Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane, J. Membr. Sci., 475 (2015) 281–289.
  129. Z. Dabaghian, A. Rahimpour, Carboxylated carbon nanofibers as hydrophilic porous material to modification of cellulosic membranes for forward osmosis desalination, Chem. Eng. Res. Des., 104 (2015) 647–657.
  130. W. Fang, C. Liu, L. Shi, R. Wang, Composite forward osmosis hollow fiber membranes: Integration of RO- and NF-like selective layers for enhanced organic fouling resistance, J. Membr. Sci., 492 (2015) 147–155.
  131. R.C. Ong, T.S. Chung, J.S. de Wit, B.J. Helmer, Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes, J. Membr. Sci., 473 (2014) 63–71.
  132. J. Ren, J.R. McCutcheon, Polyacrylonitrile supported thin film composite hollow fiber membranes for forward osmosis, Desalination, 372 (2015) 67–74.
  133. M. Yasukawa, S. Mishima, M. Shibuya, D. Saeki, T. Takahashi, T. Miyoshi, H. Matsuyama, Preparation of a forward osmosis membrane using a highly porous polyketone microfiltration membrane as a novel support, J. Membr. Sci., 487 (2015) 51–59.
  134. A. Zirehpour, A. Rahimpour, F. Seyedpour, M. Jahanshahi, Developing new CTA/CA-based membrane containing hydrophilic nanoparticles to enhance the forward osmosis desalination, Desalination, 371 (2015) 46–57.
  135. M. Ghanbari, D. Emadzadeh, W.J. Lau, H. Riazi, D. Almasi, A.F. Ismail, Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/ halloysite nanotubes as membrane substrates, Desalination, 377 (2016) 152–162.
  136. X. Liu, S.L. Ong, H.Y. Ng, Fabrication of mesh-embedded double-skinned substrate membrane and enhancement of its surface hydrophilicity to improve anti-fouling performance of resultant thin-film composite forward osmosis membrane, J. Membr. Sci., 511 (2016) 40–53.
  137. X.Y. Chi, P.Y. Zhang, X.J. Guo, Z.L. Xu, A novel TFC forward osmosis (FO) membrane supported by polyimide (PI) microporous nanofiber membrane, Appl. Surf. Sci., 427 (2018) 1–9.
  138. M. Shibuya, M. Yasukawa, S. Mishima, Y. Tanaka, T. Takahashi, H. Matsuyama, A thin-film composite-hollow fiber forward osmosis membrane with a polyketone hollow fiber membrane as a support, Desalination, 402 (2017) 33–41.
  139. H. Salehi, M. Rastgar, A. Shakeri, Anti-fouling and high water permeable forward osmosis membrane fabricated via layer by layer assembly of chitosan/graphene oxide, Appl. Surf. Sci., 413 (2017) 99–108.
  140. A. Shakeri, H. Salehi, M. Rastgar, Chitosan-based thin active layer membrane for forward osmosis desalination, Carbohydr. Polym., 174 (2017) 658–668.
  141. X. Zhang, L. Shen, W.Z. Lang, Y. Wang, Improved performance of thin-film composite membrane with PVDF/PFSA substrate for forward osmosis process, J. Membr. Sci., 535 (2017) 188–199.
  142. X. Zhao, J. Li, C. Liu, Improving the separation performance of the forward osmosis membrane based on the etched microstructure of the supporting layer, Desalination, 408 (2017) 102–109.
  143. W. Xu, Q. Ge, Novel functionalized forward osmosis (FO) membranes for FO desalination: Improved process performance and fouling resistance, J. Membr. Sci., 555 (2018) 507–516.
  144. M. Qiu, C. He, Novel zwitterion-silver nanocomposite modified thin-film composite forward osmosis membrane with simultaneous improved water flux and biofouling resistance property, Appl. Surf. Sci., 455 (2018) 492–501.
  145. Z. Zhou, Y. Hu, C. Boo, Z. Liu, J. Li, L. Deng, X. An, Highperformance thin-film composite membrane with an ultrathin spray-coated carbon nanotube interlayer, Environ. Sci. Technol. Lett., 5 (2018) 243–248.
  146. A. Rahimpour, S.F. Seyedpour, S. Aghapour Aktij, M. Dadashi Firouzjaei, A. Zirehpour, A. Arabi Shamsabadi, S. Khoshhal Salestan, M. Jabbari, M. Soroush, Simultaneous improvement of antimicrobial, antifouling, and transport properties of forward osmosis membranes with immobilized highly-compatible polyrhodanine nanoparticles, Environ. Sci. Technol., 52 (2018) 5246–5258.
  147. P. Lu, W. Li, S. Yang, Y. Wei, Z. Zhang, Y. Li, Layered double hydroxides (LDHs) as novel macropore-templates: The importance of porous structures for forward osmosis desalination, J. Membr. Sci., 585 (2019) 175–183.
  148. S. Xu, F. Li, B. Su, M.Z. Hu, X. Gao, C. Gao, Novel graphene quantum dots (GQDs)-incorporated thin film composite (TFC) membranes for forward osmosis (FO) desalination, Desalination, (2019) 219–230.
  149. S. Lim, V.H. Tran, N. Akther, S. Phuntsho, H.K. Shon, Defect-free outer-selective hollow fiber thin-film composite membranes for forward osmosis applications, J. Membr. Sci., 586 (2019) 281–291.
  150. L. Deng, Q. Wang, X. An, Z. Li, Y. Hu, Towards enhanced antifouling and flux performances of thin-film composite forward osmosis membrane via constructing a sandwich-like carbon nanotubes-coated support, Desalination, 479 (2020) 114311. https://doi.org/10.1016/j.desal.2020.114311.