References

  1. A.K. Dwivedi, Researches in water pollution: a review, Int. Res. J. Nat. Appl. Sci., 4 (2017) 118–142.
  2. E. de Souza Nascimento, A.T. Filho, Chemical waste risk reduction and environmental impact generated by laboratory activities in research and teaching institutions, Brazilian J. Pharm. Sci., 46 (2010) 187–198.
  3. R. Tabasi, G. Marth, Clinical waste management: a review on important factors in clinical waste generation rate, Int. J. Sci. Technol., 3 (2013) 194–200.
  4. B. Samiey, C.-H. Cheng, J.N. Wu, Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: a review, Materials, 7 (2014) 673–726.
  5. T. Liang, C.J. Yan, X.J. Li, S. Zhou, H.Q. Wang, Polyacrylic acid grafted silica fume as an excellent adsorbent for dysprosium(III) removal from industrial wastewater, Water Sci. Technol., 77 (2018) 1570–1580.
  6. A. Jaiswal, S. Banerjee, R. Mani, M.C. Chattopadhyaya, Synthesis, characterization and application of goethite mineral as an adsorbent, J. Environ. Chem. Eng., 1 (2013) 281–289.
  7. Y. Zhong, D.D. Sheng, F.Z. Xie, G.L. Li, H. Li, X. Han, W.J. Xie, W.-C. Oh, Adsorption behavior and mechanism of tripolyphosphate on synthetic goethite, J. Korean Ceram. Soc., 56 (2019) 146−152.
  8. K. Srinivas, A.L Naidu, M.V.A.R. Bahubalendruni, A review on chemical and mechanical properties of natural fiber reinforced polymer composites, Int. J. Performability Eng., 13 (2017) 189–200.
  9. J. Kugbe, N. Matsue, T. Henmi, Synthesis of Linde type A zeolite–goethite nanocomposite as an adsorbent for cationic and anionic pollutants, J. Hazard. Mater., 164 (2009) 929–935.
  10. G. Montes-Hernandez, F. Renard, R. Chiriac, N. Findling, J. Ghanbaja, F. Toche, Sequential precipitation of a new goethite–calcite nanocomposite and its possible application in the removal of toxic ions from polluted water, Chem. Eng. J., 214 (2013) 139–148.
  11. K. Ramirez-Muñiz, F. Perez-Rodriguez, R. Rangel-Mendez, Adsorption of arsenic onto an environmental friendly goethitepolyacrylamide composite, J. Mol. Liq., 264 (2018) 253–260.
  12. D.X. Kong, L.D. Wilson, Synthesis and characterization of cellulose-goethite composites and their adsorption properties with roxarsone, Carbohydr. Polym., 169 (2017) 282–294.
  13. H. Siwek, A. Bartkowiak, M. Włodarczyk, Adsorption of phosphates from aqueous solutions on alginate/goethite hydrogel composite, Water, 11 (2019) 1‒13, https://doi.org/ 10.3390/w11040633.
  14. J.M. Lin, Q.W. Tang, J.H. Wu, S.C. Hao, The synthesis and electrical conductivity of a polyacrylate/graphite hydrogel, React. Funct. Polym., 67 (2007) 275–281.
  15. Q.W. Tang, J.H. Wu, H. Sun, S.J. Fan, D. Hu, J.M. Lin, Synthesis of polyacrylate/poly(ethylene glycol) hydrogel and its absorption properties for heavy metal ions and dye, Polym. Compos., 30 (2009) 1183–1189.
  16. G.K. Elyashevich, N.G. Bel’nikevich, S.A. Vesnebolotskaya, Swelling-contraction of sodium polyacrylate hydrogels in media with various pH values, J. Polym. Sci., 5 (2009) 550–553.
  17. D.M.E. Thies-Weesie, J.P. de Hoog, M.H.H. Mendiola, A.V. Petukhov, G.J. Vroege, Synthesis of goethite as a model colloid for mineral liquid crystals, Chem. Mater., 19 (2007) 5538–5546.
  18. Q.L. Shou, J.P. Cheng, L. Zhang, B.J. Nelson, X.B. Zhang, Synthesis and characterization of a nanocomposite of goethite nanorods and reduced graphene oxide for electrochemical capacitors, J. Solid State Chem., 185 (2012) 191–197.
  19. M. Villacís-García, M. Ugalde-Arzate, K. Vaca-Escobar, M. Villalobos, R. Zanella, N. Martínez-Villegas, Laboratory synthesis of goethite and ferrihydrite of controlled particle sizes, Sociedad Geológica Mexicana, 67 (2015) 433–446.
  20. C.E.A. Carnairo, F.F. Ivashita, I.G. de Souza Jr., C.M.D. de Souza, A. Paesano Jr., A.C.S. da Costa, E. di Mauro, H. de Santana, C.T.B.V. Zaia, D.A.M. Zaia, Synthesis of goethite in solutions of artificial seawater and amino acids: a prebiotic chemistry study, Int. J. Astrobiol., 12 (2013) 149–160.
  21. D. Kharisma, Z. Abidin, C. Kusmana, Adsorption of methylene blue onto a low-cost and environmental friendly goethite, IOP Conf. Ser.: Earth Environ. Sci., 399 (2019) 012013.
  22. S. Sultana, M.K.I. Sumon, H.P. Noor, W.M. Ajmotgir, M.K.U. Sarker, M.R. Hasan, Swelling and physico-mechanical properties of synthesized sodium polyacrylate hydrogels, Int. J. Adv. Res., 5 (2017) 84–92.
  23. H. Takeno, Y. Kimura, W. Nakamura, Mechanical, swelling, and structural properties of mechanically tough clay-sodium polyacrylate blend hydrogels, Gels, 3 (2017) 1–10, doi: 10.3390/ gels3010010.
  24. P. Zarzycki, K.M. Rosso, Surface charge effects on Fe(II) sorption and oxidation at (110) goethite surfaces, J. Phys. Chem., 122 (2018) 10059–10066.
  25. F. Chen, W. Ye, Y. Tang, Adsorption of heavy metals by sodium polyacrylate-humic acid-rectorite composite as a novel adsorbent, Adv. Mater. Res., 550–553 (2012) 2428–2435.
  26. Z. Abidin, A.H. Triawati, S. Sugiarti, A.G. Fahmi, V. Prajaputra, D. Kharisma, Multifunctional composites of hydroxy-Fe/polyacrylates and its surface properties, IOP Conf. Ser.: Earth Environ. Sci., 187 (2018) 012073.