References

  1. M. Qasim, M. Badrelzaman, N.N. Darwish, N.A. Darwish, Reverse osmosis desalination: a state-of-the-art review, Desalination, 459 (2019) 59–104.
  2. M.A. Abdelkareem, M. El Haj Assad, E.T. Sayed, B. Soudan, Recent progress in the use of renewable energy sources to power water desalination plants, Desalination, 435 (2018) 97–113.
  3. S.S. Shenvi, A.M. Isloor, A.F. Ismail, A review on RO membrane technology: developments and challenges, Desalination, 368 (2015) 10–26.
  4. R. Mahadeva, G. Manik, O.P. Verma, S. Sinha, Modelling and simulation of desalination process using artificial neural network: a review, Desal. Water Treat., 122 (2018) 351–364.
  5. R. Mehta, H. Brahmbhatt, M. Mukherjee, A. Bhattacharya, Tuning separation behavior of tailor-made thin film poly(piperazine-amide) composite membranes for pesticides and salts from water, Desalination, 404 (2017) 280–290.
  6. R.J. Petersen, Composite reverse osmosis and nanofiltration membranes, J. Membr. Sci., 83 (1993) 81–150.
  7. R. Lo, A. Bhattacharya, B. Ganguly, Probing the selective salt rejection behavior of thin film composite membranes: a DFT study, J. Membr. Sci., 436 (2013) 90–96.
  8. R. Mehta, H. Brahmbhatt, N.K. Saha, A. Bhattacharya, Removal of substituted phenyl urea pesticides by reverse osmosis membranes: laboratory scale study for field water application, Desalination, 358 (2015) 69–75.
  9. R. Mahadeva, G. Manik, A. Goel, N. Dhakal, A review of the artificial neural network based modelling and simulation approaches applied to optimize reverse osmosis desalination techniques, Desal. Water Treat., 156 (2019) 245–256.
  10. F.E. Ahmed, R. Hashaikeh, A. Diabat, N. Hilal, Mathematical and optimization modelling in desalination: State-of-the-art and future direction, Desalination, 469 (2019) 114092.
  11. M.E. El-Hawary, Artificial neural networks and possible applications to desalination, Desalination, 92 (1993) 125–147.
  12. H. Niemi, A. Bulsari, S. Palosaari, Simulation of membrane separation by neural networks, J. Membr. Sci., 102 (1995) 185–191.
  13. A. Al-Alawi, S. M Al-Alawi, S. M Islam, Predictive control of an integrated PV-diesel water and power supply system using an artificial neural network, Renewable Energy, 32 (2007) 1426–1439.
  14. E.S. Salami, M. Ehetshami, A. Karimi-Jashni, M. Salari, S. Nikbakht Sheibani, A. Ehteshami, A mathematical method and artificial neural network modeling to simulate osmosis membrane’s performance, Modell. Earth Syst. Environ., 2 (2016) 1–11.
  15. P. Cabrera, J.A. Carta, J. González, G. Melián, Wind-driven SWRO desalination prototype with and without batteries: a performance simulation using machine learning models, Desalination, 435 (2018) 77–96.
  16. R. Mahadeva, G. Manik, O.P. Verma, A. Goel, S. Kumar, Modelling and Simulation of Reverse Osmosis System Using PSO-ANN Prediction Technique, in: Adv. Intell. Syst. Comput., Springer, 1053, 2020, pp. 1209–1219.
  17. A. Goel, G. Manik, R. Mahadeva, A Review of Parabolic Trough Collector and Its Modeling, in: Adv. Intell. Syst. Comput., Springer, 1053, 2020, pp. 803–813.
  18. L.T. Le, H. Nguyen, J. Dou, J. Zhou, A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the heating load of buildings’ energy efficiency for smart city planning, Appl. Sci., 9 (2019) 1–23.
  19. S. Al Aani, T. Bonny, S.W. Hasan, N. Hilal, Can machine language and artificial intelligence revolutionize process automation for water treatment and desalination?, Desalination, 458 (2019) 84–96.
  20. M.A. Ahmadi, R. Soleimani, A. Bahadori, A computational intelligence scheme for prediction equilibrium water dew point of natural gas in TEG dehydration systems, Fuel, 137 (2014) 145–154.
  21. J. Kennedy, E. Russell, Particle swarm optimization, Proc. IEEE Int. Conf., (1995) 1942–1948.
  22. R. Eberhart, J. Kennedy, A New Optimizer Using Particle Swarm Theory, Proc. Int. Symp. Micro Mach. Hum. Sci., (1995) 39–43.
  23. M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput., 6 (2002) 58–73.
  24. R.C. Eberthart, Y. Shi, Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization, IEEE, 2000, pp. 84–88.
  25. R. Mehta, H. Brahmbhatt, G. Bhojani, M. Mukherjee, A. Bhattacharya, Poly(piperizinamide) with copper ion composite membranes: application for mitigation of Hexaconazole from water and combat microbial contamination, J. Hazard. Mater., 376 (2019) 102–111.
  26. J.M.M. Peeters, J.P. Boom, M.H.V. Mulder, H. Strathmann, Retention measurements of nanofiltration membranes with electrolyte solutions, J. Membr. Sci., 145 (1998) 199–209.
  27. A.L. Ahmad, B.S. Ooi, A.W. Mohammad, J.P. Choudhury, Composite nanofiltration polyamide membrane: a study on the diamine ratio and its performance evaluation, Ind. Eng. Chem. Res., 43 (2004) 8074–8082.
  28. D.J. Armaghani, E.T. Mohamad, M.S. Narayanasamy, N. Narita, S. Yagiz, Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition, Tunn. Undergr. Sp. Technol., 63 (2017) 29–43.
  29. M. Khajeh, M. Kaykhaii, A. Sharafi, Application of PSOartificial neural network and response surface methodology for removal of methylene blue using silver nanoparticles from water samples, J. Ind. Eng. Chem., 19 (2013) 1624–1630.
  30. M. Buyukyildiz, G. Tezel, V. Yilmaz, Estimation of the change in lake water level by artificial intelligence methods, Water Resour. Manage., 28 (2014) 4747–4763.
  31. M. Khajeh, A. Sarafraz-Yazdi, A.F. Moghadam, Modeling of solid-phase tea waste extraction for the removal of manganese and cobalt from water samples by using PSO-artificial neural network and response surface methodology, Arabian J. Chem., 10 (2017) S1663–S1673.
  32. K.W. Chau, Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River, J. Hydrol., 329 (2006) 363–367.
  33. S.V. Alavi Nezhad Khalil Abad, M. Yilmaz, D. Jahed Armaghani, A. Tugrul, Prediction of the durability of limestone aggregates using computational techniques, Neural Comput. Appl., 29 (2018) 423–433.
  34. Y. Mei, J. Yang, Y. Lu, F. Hao, D. Xu, H. Pan, J. Wang, BP– ANN model coupled with particle swarm optimization for the efficient prediction of 2-chlorophenol removal in an electrooxidation system, Int. J. Environ. Res. Public Health., 16 (2019) 2454.
  35. A. Aryafar, R. Mikaeil, F. Doulati Ardejani, S. Shaffiee Haghshenas, A. Jafarpour, Application of non-linear regression and soft computing techniques for modeling process of pollutant adsorption from industrial wastewaters, J. Min. Environ., 10 (2019) 327–337.