References
- M. Qasim, M. Badrelzaman, N.N. Darwish, N.A. Darwish,
Reverse osmosis desalination: a state-of-the-art review,
Desalination, 459 (2019) 59–104.
- M.A. Abdelkareem, M. El Haj Assad, E.T. Sayed, B. Soudan,
Recent progress in the use of renewable energy sources to
power water desalination plants, Desalination, 435 (2018)
97–113.
- S.S. Shenvi, A.M. Isloor, A.F. Ismail, A review on RO membrane
technology: developments and challenges, Desalination,
368 (2015) 10–26.
- R. Mahadeva, G. Manik, O.P. Verma, S. Sinha, Modelling
and simulation of desalination process using artificial neural
network: a review, Desal. Water Treat., 122 (2018) 351–364.
- R. Mehta, H. Brahmbhatt, M. Mukherjee, A. Bhattacharya,
Tuning separation behavior of tailor-made thin film
poly(piperazine-amide) composite membranes for pesticides
and salts from water, Desalination, 404 (2017) 280–290.
- R.J. Petersen, Composite reverse osmosis and nanofiltration
membranes, J. Membr. Sci., 83 (1993) 81–150.
- R. Lo, A. Bhattacharya, B. Ganguly, Probing the selective salt
rejection behavior of thin film composite membranes: a DFT
study, J. Membr. Sci., 436 (2013) 90–96.
- R. Mehta, H. Brahmbhatt, N.K. Saha, A. Bhattacharya, Removal
of substituted phenyl urea pesticides by reverse osmosis
membranes: laboratory scale study for field water application,
Desalination, 358 (2015) 69–75.
- R. Mahadeva, G. Manik, A. Goel, N. Dhakal, A review of the
artificial neural network based modelling and simulation
approaches applied to optimize reverse osmosis desalination
techniques, Desal. Water Treat., 156 (2019) 245–256.
- F.E. Ahmed, R. Hashaikeh, A. Diabat, N. Hilal, Mathematical
and optimization modelling in desalination: State-of-the-art
and future direction, Desalination, 469 (2019) 114092.
- M.E. El-Hawary, Artificial neural networks and possible
applications to desalination, Desalination, 92 (1993) 125–147.
- H. Niemi, A. Bulsari, S. Palosaari, Simulation of membrane
separation by neural networks, J. Membr. Sci., 102 (1995) 185–191.
- A. Al-Alawi, S. M Al-Alawi, S. M Islam, Predictive control of
an integrated PV-diesel water and power supply system using
an artificial neural network, Renewable Energy, 32 (2007)
1426–1439.
- E.S. Salami, M. Ehetshami, A. Karimi-Jashni, M. Salari,
S. Nikbakht Sheibani, A. Ehteshami, A mathematical method
and artificial neural network modeling to simulate osmosis
membrane’s performance, Modell. Earth Syst. Environ., 2 (2016)
1–11.
- P. Cabrera, J.A. Carta, J. González, G. Melián, Wind-driven
SWRO desalination prototype with and without batteries:
a performance simulation using machine learning models,
Desalination, 435 (2018) 77–96.
- R. Mahadeva, G. Manik, O.P. Verma, A. Goel, S. Kumar,
Modelling and Simulation of Reverse Osmosis System Using
PSO-ANN Prediction Technique, in: Adv. Intell. Syst. Comput.,
Springer, 1053, 2020, pp. 1209–1219.
- A. Goel, G. Manik, R. Mahadeva, A Review of Parabolic Trough
Collector and Its Modeling, in: Adv. Intell. Syst. Comput.,
Springer, 1053, 2020, pp. 803–813.
- L.T. Le, H. Nguyen, J. Dou, J. Zhou, A comparative study of
PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating
the heating load of buildings’ energy efficiency for smart
city planning, Appl. Sci., 9 (2019) 1–23.
- S. Al Aani, T. Bonny, S.W. Hasan, N. Hilal, Can machine
language and artificial intelligence revolutionize process
automation for water treatment and desalination?, Desalination,
458 (2019) 84–96.
- M.A. Ahmadi, R. Soleimani, A. Bahadori, A computational
intelligence scheme for prediction equilibrium water dew
point of natural gas in TEG dehydration systems, Fuel,
137 (2014) 145–154.
- J. Kennedy, E. Russell, Particle swarm optimization, Proc. IEEE
Int. Conf., (1995) 1942–1948.
- R. Eberhart, J. Kennedy, A New Optimizer Using Particle
Swarm Theory, Proc. Int. Symp. Micro Mach. Hum. Sci., (1995)
39–43.
- M. Clerc, J. Kennedy, The particle swarm-explosion, stability,
and convergence in a multidimensional complex space, IEEE
Trans. Evol. Comput., 6 (2002) 58–73.
- R.C. Eberthart, Y. Shi, Comparing Inertia Weights and
Constriction Factors in Particle Swarm Optimization, IEEE,
2000, pp. 84–88.
- R. Mehta, H. Brahmbhatt, G. Bhojani, M. Mukherjee,
A. Bhattacharya, Poly(piperizinamide) with copper ion composite
membranes: application for mitigation of Hexaconazole
from water and combat microbial contamination, J. Hazard.
Mater., 376 (2019) 102–111.
- J.M.M. Peeters, J.P. Boom, M.H.V. Mulder, H. Strathmann,
Retention measurements of nanofiltration membranes with
electrolyte solutions, J. Membr. Sci., 145 (1998) 199–209.
- A.L. Ahmad, B.S. Ooi, A.W. Mohammad, J.P. Choudhury,
Composite nanofiltration polyamide membrane: a study on the
diamine ratio and its performance evaluation, Ind. Eng. Chem.
Res., 43 (2004) 8074–8082.
- D.J. Armaghani, E.T. Mohamad, M.S. Narayanasamy,
N. Narita, S. Yagiz, Development of hybrid intelligent models
for predicting TBM penetration rate in hard rock condition,
Tunn. Undergr. Sp. Technol., 63 (2017) 29–43.
- M. Khajeh, M. Kaykhaii, A. Sharafi, Application of PSOartificial
neural network and response surface methodology
for removal of methylene blue using silver nanoparticles
from water samples, J. Ind. Eng. Chem., 19 (2013) 1624–1630.
- M. Buyukyildiz, G. Tezel, V. Yilmaz, Estimation of the
change in lake water level by artificial intelligence methods,
Water Resour. Manage., 28 (2014) 4747–4763.
- M. Khajeh, A. Sarafraz-Yazdi, A.F. Moghadam, Modeling of
solid-phase tea waste extraction for the removal of manganese
and cobalt from water samples by using PSO-artificial neural
network and response surface methodology, Arabian J. Chem.,
10 (2017) S1663–S1673.
- K.W. Chau, Particle swarm optimization training algorithm
for ANNs in stage prediction of Shing Mun River, J. Hydrol.,
329 (2006) 363–367.
- S.V. Alavi Nezhad Khalil Abad, M. Yilmaz, D. Jahed Armaghani,
A. Tugrul, Prediction of the durability of limestone aggregates
using computational techniques, Neural Comput. Appl.,
29 (2018) 423–433.
- Y. Mei, J. Yang, Y. Lu, F. Hao, D. Xu, H. Pan, J. Wang, BP–
ANN model coupled with particle swarm optimization for the
efficient prediction of 2-chlorophenol removal in an electrooxidation
system, Int. J. Environ. Res. Public Health., 16 (2019)
2454.
- A. Aryafar, R. Mikaeil, F. Doulati Ardejani, S. Shaffiee
Haghshenas, A. Jafarpour, Application of non-linear regression
and soft computing techniques for modeling process of
pollutant adsorption from industrial wastewaters, J. Min.
Environ., 10 (2019) 327–337.