References

  1. Y. Sun, C. Zhu, H. Zheng, W. Sun, Y. Xu, X. Xiao, Z. You, C. Liu, Characterization and coagulation behavior of polymeric aluminum ferric silicate for high-concentration oily wastewater treatment, Chem. Eng. Res. Des., 119 (2017) 23–32.
  2. N.H. Ismail, W.N.W. Salleh, A.F. Ismail, H. Hasbullah, N. Yusof, F. Aziz, J. Jaafar, Hydrophilic polymer-based membrane for oily wastewater treatment: a review, Sep. Purif. Technol., 233 (2020) 116007 (1–18), doi: 10.1016/j.seppur.2019.116007.
  3. R.H. Hesas, M.S. Baei, H. Rostami, J. Gardy, A. Hassanpour, An investigation on the capability of magnetically separable Fe3O4/mordenite zeolite for refinery oily wastewater purification, J. Environ. Manage., 241 (2019) 525–534.
  4. A.A. Aly, Y.N. Hasan, A.S. Al-Farraj, Olive mill wastewater treatment using a simple zeolite-based low-cost method, J. Environ. Manage., 145 (2014) 341–348.
  5. Y. Fan, S. Simon, J. Sjöblom, Chemical destabilization of crude oil emulsions: effect of nonionic surfactants as emulsion inhibitors, Energy Fuels, 23 (2009) 4575–4583.
  6. L.C. Gobbi, I.L. Nascimento, E.P. Muniz, S.M. Rocha, P.S. Porto, Electrocoagulation with polarity switch for fast oil removal from oil in water emulsions, J. Environ. Manage., 213 (2018) 119–125.
  7. Y. Peng, F. Guo, Q. Wen, F. Yang, Z. Guo, A novel polyacrylonitrile membrane with a high flux for emulsified oil/water separation, Sep. Purif. Technol., 184 (2017) 72–78.
  8. C. Chen, B. Chen, Graphene oxide coated meshes with stable underwater superoleophobicity and anti-oil-fouling property for highly efficient oil/water separation, Sci. Total Environ., 696 (2019) 133777 (1–8), doi: 10.1016/j.scitotenv.2019.133777.
  9. M. Padaki, R. Surya Misdan, A. Moslehyani, M.A. Kassim, N. Hilal, A.F. Ismail, Membrane technology enhancement in oil–water separation. A review, Desalination, 357 (2015) 197–207.
  10. C. Zhou, J. Cheng, K. Hou, A. Zhao, P. Pi, X. Wen, S. Xu, Superhydrophilic and underwater superoleophobic titania nanowires surface for oil repellency and oil/water separation, Chem. Eng. J., 301 (2016) 249–256.
  11. F. Zhang, S. Gao, Y. Zhu, J. Jin, Alkaline-induced superhydrophilic/ underwater superoleophobic polyacrylonitrile membranes with ultralow oil-adhesion for high-efficient oil/water separation, J. Membr. Sci., 513 (2016) 67–73.
  12. J. Zhang X. Pan, Q. Xue, D. He, L. Zhu, Q. Guo, Antifouling hydrolyzed polyacrylonitrile/graphene oxide membrane with spindle-knotted structure for highly effective separation of oil-water emulsion, J. Membr. Sci., 532 (2017) 38–46.
  13. E.N. Tummons, V.V. Tarabara, J.W. Chew, A.G. Fane, Behavior of oil droplets at the membrane surface during crossflow microfiltration of oil–water emulsions, J. Membr. Sci., 500 (2016) 211–224.
  14. O.K. Abass, F. Fang, M. Zhou, K. Zhang, Integrated interrogation of causes of membrane fouling in a pilot-scale anoxic-oxic membrane bioreactor treating oil refinery wastewater, Sci. Total Environ., 642 (2018) 77–89.
  15. N.N. Gumbi, M. Hu, B.B. Mamba, J. Li, E.N. Nxumalo, Macrovoid-free PES/SPSf/O-MWCNT ultrafiltration membranes with improved mechanical strength, antifouling and antibacterial properties, J. Membr. Sci., 566 (2018) 288–300.
  16. A. Tiraferri, Y. Kang, E.P. Giannelis, M. Elimelech, Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms, Environ. Sci. Technol., 46 (2012) 11135–11144.
  17. S. Li, Z. Cui, L. Zhang, B. He, J. Li, The effect of sulfonated polysulfone on the compatibility and structure of polyethersulfone-based blend membranes, J. Membr. Sci., 513 (2016) 1–11.
  18. D. Rana, B.M. Mandal, S.N. Bhattacharyya, Analogue calorimetry of polymer blends: poly(styrene-co-acrylonitrile) and poly(phenyl acrylate) or poly(vinyl benzoate), Polymer, 37 (1996) 2439–2443.
  19. D. Rana, B.M. Mandal, S.N. Bhattacharyya, Analogue calorimetric studies of blends of poly(vinyl ester) and polyacrylates, Macromolecules, 29 (1996) 1579–1583.
  20. D. Rana, K. Bag, S.N. Bhattacharyya, B.M. Mandal, Miscibility of poly(styrene-co-butyl acrylate) with poly(ethyl methacrylate): existence of Both UCST and LCST, J. Polym. Sci., 38 (2000) 369–375.
  21. B. Schneier, Polymer compatibility, J. Appl. Polym. Sci., 17 (1973) 3175–3185.
  22. M.L. Masheane, A.R.D. Verliefde, S.D. Mhlanga, PES/quaternized-PES blend anion exchange membranes: investigation of polymer compatibility and properties of the blend, J. Membr. Sci. Res., 4 (2018) 93–100.
  23. M. Yang, T. Liu, The permeation performance of polyacrylonitrile/polyvinylidine fluoride blend membranes, J. Membr. Sci., 226 (2003) 119–130.
  24. S. Xu, Y. Liu, Y. Yu, X. Zhang, J. Zhang, Y. Li, PAN/PVDF chelating membrane for simultaneous removal of heavy metal and organic pollutants from mimic industrial wastewater, Sep. Purif. Technol., 235 (2020) 116185 (1–9), doi: 10.1016/j. seppur.2019.116185.
  25. M. Masuelli, J. Marchese, N.A. Ochoa, SPC/PVDF membranes for emulsified oily wastewater treatment, J. Membr. Sci., 326 (2009) 688–693.
  26. A. Subramania, N.T.K. Sundaram, G.V. Kumar, Structural and electrochemical properties of micro-porous polymer blend electrolytes based on PVdF-co-HFP-PAN for Li-ion battery applications, J. Power Sources, 153 (2006) 177–182.
  27. X. Zhu, H.-E. Loo, R. Bai, A novel membrane showing both hydrophilic and oleophobic surface properties and its nonfouling performances for potential water treatment applications, J. Membr. Sci., 436 (2013) 47–56.
  28. Y. Xiuli, C. Hongbin, W. Xiu, Y. Yongxin, Morphology and properties of hollow-fiber membrane made by PAN mixing with small amount of PVDF, J. Membr. Sci., 146 (1998) 179–184.
  29. N. Peng, T.S. Chung, K.Y. Wang, Macrovoid evolution and critical factors to form macrovoid-free hollow fiber membranes, J. Membr. Sci., 318 (2008) 363–372.
  30. S.X. Da, J. Wang, H.Z. Geng, S.L. Jia, C.X. Xu, L.G. Li, P.P. Shi, G. Li, High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes, Appl. Surf. Sci., 392 (2017) 1117–1125.
  31. W. Wang, L. Zhu, B. Shan, C. Xie, C. Liu, F. Cui, G. Li, Preparation and characterization of SLS-CNT/PES ultrafiltration membrane with antifouling and antibacterial properties, J. Membr. Sci., 548 (2018) 459–469.
  32. B. Arash, Q. Wang, V.K. Varadan, Mechanical properties of carbon nanotube/polymer composites, Sci. Rep., 4 (2014) 6479 (1–8), doi: 10.1038/srep06479.
  33. S. Majeed, D. Fierro, K. Buhr, J. Wind, B. Du, A. Boschetti-de- Fierro, V. Abetz, Multi-walled carbon nanotubes (MWCNTs) mixed polyacrylonitrile (PAN) ultrafiltration membranes, J. Membr. Sci., 403–404 (2012) 101–109.
  34. C. Liu, W. Wang, Y. Li, F. Cui, C. Xie, L. Zhu, B. Shan, PMWCNT/ PVDF ultrafiltration membranes with enhanced antifouling properties intensified by electric field for efficient blood purification, J. Membr. Sci., 576 (2019) 48–58.
  35. V. Vatanpour, N. Haghighat, Improvement of polyvinyl chloride nanofiltration membranes by incorporation of multiwalled carbon nanotubes modified with triethylenetetramine to use in treatment of dye wastewater, J. Environ. Manage., 242 (2019) 90–97.
  36. Winarto, E. Yamamoto, K. Yasuoka, Separation of water– alcohol mixtures using carbon nanotubes under an electric field, Phys. Chem. Chem. Phys., 21 (2019) 15431–15438.
  37. Y. Huang, C. Xiao, Miscibility and mechanical properties of quaternized polysulfone/ benzoyl guar gum blends, Polymer, 48 (2007) 371–381.
  38. P. Wu, L.Y. Jiang, B. Hu, Fabrication of novel PVDF/P(VDF-co- HFP) blend hollow fiber membranes for DCMD, J. Membr. Sci., 566 (2018) 442–454.
  39. S. Panahian, A. Raisi, A. Aroujalian, Multilayer mixed matrix membranes containing modified-MWCNTs for dehydration of alcohol by pervaporation process, Desalination, 355 (2015) 45–55.
  40. J. Saadati, M. Pakizeh, Separation of oil/water emulsion using a new PSf/pebax/F-MWCNT nanocomposite membrane, J. Taiwan Inst. Chem. Eng., 71 (2017) 265–276.
  41. I.M. Wienk, R.M. Boom, M.A.M. Beerlage, A.M.W. Bulte, C.A. Smolders, H. Strathmann, Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers, J. Membr. Sci., 113 (1996) 361–371.
  42. J.-J. Li, Y.-N. Zhou, Z.-H. Luo, Polymeric materials with switchable superwettability for controllable oil/water separation: a comprehensive review, Prog. Polym. Sci., 87 (2018) 1–33.
  43. O. Marie, F.T. Starzyk, J.C. Lavalley, Confirmation of strongest nitrile-hydroxy groups interaction in the side pockets of mordenite zeolites, Phys. Chem. Chem. Phys., 2 (2000) 5341–5349.
  44. H. Zarrabi, M.E. Yekavalangi, V. Vatanpour, A. Shockravi, M. Safarpour, Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using aminefunctionalized multiwalled carbon nanotube, Desalination, 394 (2016) 83–90.
  45. X. Zhao, L. Cheng, R. Wang, N. Jia, L. Liu, C. Gao, Bioinspired synthesis of polyzwitterion/titania functionalized carbon nanotube membrane with superwetting property for efficient oil-in-water emulsion separation, J. Membr. Sci., 589 (2019), 117257 (1–9) doi: 10.1016/j.memsci.2019.117257.
  46. J. Saththasivam, W. Yiming, K. Wang, J. Jin, Z. Liu, A novel architecture for carbon nanotube membranes towards fast and efficient oil/water separation, Sci. Rep., 8 (2018) 7418 (1–6), doi: 10.1038/s41598-018-25788-9.
  47. J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites, Carbon, 44 (2006) 1624–1652.
  48. G.R. Guillen, Y. Pan, M. Li, E.M. Hoek, Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review, Ind. Eng. Chem. Res., 50 (2011) 3798–3817.