References

  1. J. Liu, Y. Wu, C. Wu, K. Muylaert, W. Vyverman, H.Q. Yu, R. Muñoz, B. Rittmann, Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: a review, Bioresour. Technol., 241 (2017) 1127–1137.
  2. A. Skoyles, S.R. Chaganti, S.O. Mundle, C.G. Weisener, Nitrification kinetics and microbial community dynamics of attached biofilm in wastewater treatment, Water Sci. Technol., 81 (2020) 891–905.
  3. G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett., 17 (2019) 145–155.
  4. B. Halan, K. Buehler, A. Schmid, Biofilms as living catalysts in continuous chemical syntheses, Trends Biotechnol., 30 (2012) 453–465.
  5. M. Asri, S. Elabed, S.I. Koraichi, N.E. Ghachtouli, Biofilm-Based Systems for Industrial Wastewater Treatment, C.M. Hussain, Ed., Handbook of Environmental Materials Management, Springer, Cham, 2018, pp. 1–21.
  6. Z. Lewandowski, H. Beyenal, Fundamentals of Biofilm Research, 2nd ed., CRC Press, New York, NY, 2013.
  7. E. Ilhan-Sungur, A. Çotuk, Microbial corrosion of galvanized steel in a simulated recirculating cooling tower system, Corros. Sci., 52 (2010) 161–171.
  8. M.J. Lehtola, I.T. Miettinen, M.M. Keinänen, T.K. Kekki, O. Laine, A. Hirvonen, T. Vartiainen, P.J. Martikainen, Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes, Water Res., 38 (2004) 3769–3779.
  9. E. Eguía, A. Trueba, B. Río-Calonge, A. Girón, C. Bielva, Biofilm control in tubular heat exchangers refrigerated by seawater using flow inversion physical treatment, Int. Biodeterior. Biodegrad., 62 (2008) 79–87.
  10. Y. Wu, T. Li, L. Yang, Mechanisms of removing pollutants from aqueous solutions by microorganisms and their aggregates: a review, Bioresour. Technol., 107 (2012) 10–18.
  11. G. You, C. Wang, P. Wang, J. Hou, Y. Xu, L. Miao, T. Feng, Insights into spatial effects of ceria nanoparticles on oxygen mass transfer in wastewater biofilms: interfacial microstructure, in-situ microbial activity and metabolism regulation mechanism, Water Res., 176 (2020), doi: 10.1016/j. watres.2020.115731.
  12. M. Jamal, W. Ahmad, S. Andleeb, F. Jalil, M. Imran, M.A. Nawaz, T. Hussain, M. Ali, M. Rafiq, M.A. Kamil, Bacterial biofilm and associated infections, J. Chin. Med. Assoc., 81 (2018) 7–11.
  13. M.A. Yun, K.M. Yeon, J.S. Park, C.H. Lee, J. Chun, D.J. Lim, Characterization of biofilm structure and its effect on membrane permeability in MBR for dye wastewater treatment, Water Res., 40 (2006) 45–52.
  14. Y.J. Oh, N.R. Lee, W. Jo, W.K. Jung, J.S. Lim, Effects of substrates on biofilm formation observed by atomic force microscopy, Ultramicroscopy, 109 (2009) 874–880.
  15. Y. Liu, Q.S. Liu, Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors, Biotechnol. Adv., 24 (2006) 115–127.
  16. A. Praveen, P. Sreelakshmy, M. Gopan, Coir geotextile-packed conduits for the removal of biodegradable matter from wastewater, Curr. Sci., 95 (2008) 655–658.
  17. R. Dungani, M. Karina, A.S. Subyakto, D. Hermawan, A. Hadiyane, Agricultural waste fibers towards sustainability and advanced utilization: a review, Asia J. Plant Sci., 15 (2016) 42–55.
  18. M. Rajinipriya, M. Nagalakshmaiah, M. Robert, S. Elkoun, Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review, ACS Sustainable Chem. Eng., 6 (2018) 2807–2828.
  19. M.U. Mahidin, Selected Agricultural Indicators, Malaysia, Press release from Department of Statistic Malaysia Official Website, 2019.Available at: https://www.dosm.gov.my/v1/index. php?r=column/cthemeByCat&cat=72&bul_id=SEUxMEE3VFd BcDJhdUhPZVUxa2pKdz09&menu_id=Z0VTZGU1UHBUT1 VJMFlpaXRRR0xpdz09
  20. D. Sud, G. Mahajan, M.P. Kaur, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – a review, Bioresour. Technol., 99 (2008) 6017–6027.
  21. P.K. Sharma, S. Ayub, C.N. Tripathi, Agro and horticultural wastes as low cost adsorbents for removal of heavy metals from wastewater: a review, Int. Ref. J. Eng. Sci., 2 (2013) 18–27.
  22. A. Habshah, Developing a Resilient and Sustainable Malaysian Coconut Industry: Policy Solutions, R. Laboh, Ed., Proceedings National Coconut Conference (NCC) 2018, ‘Empowering Coconut Industry’, Malaysia Agricultural Research and Development Institute (MARDI), Kinta Riverfront Hotel and Suites, Ipoh, Perak, Malaysia, 2018.
  23. Department of Statistic Malaysia, Supply and Utilization Accounts Selected Agricultural Commodities, Malaysia 2012–2016, Malaysia, 2017. Available at: https://dosm.gov. my/v1/index.php?r=column/cthemeByCat&cat=164&bul_ id=UDROQllWME5ETGZrcUE5VnAzcHJEQT09&menu_ id=Z0VTZGU1UHBUT1VJMFlpaXRRR0xpdz09#
  24. A. Sabzali, M. Nikaeen, B. Bina, Evaluation of cigarette filters rods as a biofilm carrier in integrated fixed film activated sludge process, World Acad. Sci. Eng. Technol., 5 (2011) 583–588.
  25. C. Asasutjarit, S. Charoenvai, J. Hirunlabh, J. Khedari, Materials and mechanical properties of pretreated coir-based green composites, Composites, Part B, 40 (2009) 633–637.
  26. T. Nguyen, F.A. Roddick, L. Fan, Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures, Membranes, 2 (2012) 804–840.
  27. G.S. Lorite, R. Janissen, J.H. Clerici, C.M. Rodrigues, J.P. Tomaz, B. Mizaikoff, C. Kranz, A.A. de Souza, M.A. Cotta, Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development, PLoS One, 8 (2013) 4–12, doi: 10.1371/journal. pone.0075247.
  28. A. Celik, A. Demirbaş, Removal of heavy metal ions from aqueous solutions via adsorption onto modified lignin from pulping wastes, Energy sources, 27 (2005) 1167–1177.
  29. A. Jamshaid, A. Hamid, N. Muhammad, A. Naseer, M. Ghauri, J. Iqbal, S. Rafiq, N.S. Shah, Cellulose-based materials for the removal of heavy metals from wastewater–an overview, ChemBioEng Rev., 4 (2017) 240–256.
  30. D.S. Malik, C.K. Jain, A.K. Yadav, Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review, Appl. Water Sci., 7 (2017) 2113–2136.
  31. M.F.M. Din, M. Ponraj, W.P. Low, M.A. Fulazzaky, K. Iwao, A.R. Songip, S. Chelliapan, Z. Ismail, M.H. Jamal, Removal rate of organic matter using natural cellulose via adsorption isotherm and kinetic studies, Water Environ. Res., 88 (2016) 118–130.
  32. W.P. Low, M.F.M. Din, F.L. Chang, S.N.F.B. Moideen, Y.Y. Lee, Empirical models of kinetic rate for river treatment analysis of cellulosic materials, J. Water Process Eng., 23 (2018) 257–264.
  33. Metcalf and Eddy, Wastewater Engineering Treatment and Reuse, 4th ed., Mc Graw Hill, New York, NY, 2003.
  34. S.L. Percival, S. Malic, H. Cruz, D.W. Williams, Introduction to Biofilms, S.L. Percival, D.C. Knottenbelt C.A. Cochrane, Eds., Biofilms and Veterinary Medicine, Springer, New York, NY, 2011, pp. 41–68.
  35. H. Palonen, Role of Lignin in the Enzymatic Hydrolysis of Lignocellulose: VTT Technical Research Centre of Finland, Finland, 2004.
  36. L. Christenson, Algal Biofilm Production and Harvesting System for Wastewater Treatment with Biofuels By-Products, Master of Science, Utah State University, Logan, Utah, 2011.
  37. A.F. Miranda, N. Ramkumar, C. Andriotis, T. Höltkemeier, A. Yasmin, S. Rochfort, D. Wlodkowic, P. Morrison, F. Roddick, G. Spangenberg, B. Lal, Applications of microalgal biofilms for wastewater treatment and bioenergy production, Biotechnol. Biofuels, 10 (2017) 1–3, doi: 10.1186/s13068-017-0798-9.
  38. P.S. Kalsi, Spectroscopy of Organic Compounds, 6th ed., New Age International Publishers, New Delhi, India, 2004.
  39. B. Doumèche, L. Galas, H. Vaudry, P. Di Martino, Membrane foulants characterization in a drinking water production unit, Food Bioprod. Process., 85 (2007) 42–48.
  40. A. Mishra, B. Jha, Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress, Bioresour. Technol., 100 (2009) 3382–3386.
  41. R. Sanna, Structural and Morphological Characterization of Hydrozincite and Its Interaction With Organic Molecules, PhD Thesis, Cagliari University, Italy, 2011.
  42. C.J. Hirschmugl, K.M. Gough, Fourier transform infrared spectrochemical imaging: review of design and applications with a focal plane array and multiple beam synchrotron radiation source, Appl. Spectrosc., 66 (2012) 475–491.
  43. T. Qin-qin, L. Zhi-rong, D. Ying, Z. Xin-xing, Biosorption properties of extracellular polymeric substances towards Zn(II) and Cu(II), Desal. Water Treat., 45 (2012) 40–47.
  44. A. Omoike, J. Chorover, Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: aqueous chemistry and adsorption effects, Biomacromolecules, 5 (2004) 1219–1230.
  45. V. Plyuta, J. Zaitseva, E. Lobakova, N. Zagoskina, A. Kuznetsov, I. Khmel, Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa, Apmis, 121 (2013) 1073–1081.
  46. D.J. Walsh, T. Livinghouse, D.M. Goeres, M. Mettler, P.S. Stewart, Antimicrobial activity of naturally occurring phenols and derivatives against biofilm and planktonic bacteria, Front. Chem., 7 (2019) 2–3, doi: 10.3389/fchem.2019.00653.
  47. A. Naseer, A. Jamshaid, A. Hamid, N. Muhammad, M. Ghauri, J. Iqbal, S. Rafiq, N.S. Shah, Lignin and lignin based materials for the removal of heavy metals from waste water-an overview, Z. Für Phys. Chem., 233 (2019) 315–345.
  48. T.R. Bott, L.F. Melo, Particle-Bacteria Interactions in Biofilms, L. Melo, T.R. Bott, M. Fletcher, B. Capdeville, Eds., Biofilms - Science and Technology, Springer Science & Business Media, Portugal, 2012, pp. 199–206.
  49. M.R. Mattei, L. Frunzo, B. D’acunto, Y. Pechaud, F. Pirozzi, G. Esposito, Continuum and discrete approach in modeling biofilm development and structure: a review, J. Math. Biol., 76 (2018) 945–1003.
  50. L. Melo, Biofilm physical structure, internal diffusivity and tortuosity, Water Sci. Technol., 52 (2005) 77–84.
  51. M. Wegener, A.R. Paschedag, M. Kraume, Mass transfer enhancement through Marangoni instabilities during single drop formation, Int. J. Heat Mass Transfer, 52 (2009) 2673–2677.
  52. J.L. Sotelo, G. Ovejero, A. Rodríguez, S. Álvarez, J. Galán, J. García, Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon, Chem. Eng. J., 240 (2014) 443–453.
  53. M.W. Fitch, Membrane Bioreactor Technology, S. Zarook, S. Ajay, Eds., Biotechnology for Odor and Air Pollution Control, Springer Science & Business Media, Germany, 2005, pp. 195–212.