References
- S. Fazlollahi, A. Hassani, M. Borghei, H. Pourzamani, Efficiency
of multi-walled carbon nanotubes in TPH adsorption in
aqueous solution, J. Environ. Sci. Technol., 19 (2017) 132–141.
- X. Zhou, D. Huang, G. Zeng, L. Chen, L. Qin, P. Xu,
M. Cheng, C. Huang, C. Zhou, Preparation of water-compatible
molecularly imprinted thiol-functionalized activated titanium
dioxide: selective adsorption and efficient photodegradation
of 2,4-dinitrophenol in aqueous solution, J. Hazard. Mater.,
346 (2018) 113–123.
- USEPA, Health Effects Support Document for Naphthalene,
Office of Water Health and Ecological Criteria Division,
U.S. Environmental Protection Agency, Washington, DC, 2003.
- D. González, L. Ruiz, G. Garralón, F. Plaza, J. Arévalo, J. Parada,
B. moreno, M. Angela-Gomes, Wastewater polycyclic aromatic
hydrocarbons removal by membrane bioreactor, Desal. Water
Treat., 42 (2012) 94–99.
- I. Manariotis, H. Karapanagioti, C. Chrysikopoulos, Degradation
of PAHs by high frequency ultrasound, Water Res.,
45 (2011) 2587–2594.
- F. Busetti, A. Heitz, M. Cuomo, S. Badoer, P. Traverso,
Determination of sixteen polycyclic aromatic hydrocarbons
in aqueous and solid samples from an Italian wastewater
treatment plant, J. Chromatogr. A, 1102 (2006) 104–115.
- E. Manoli, C. Samara, The removal of polycyclic aromatic hydrocarbons
in the wastewater treatment process: experimental
calculations and model predictions, J. Environ. Pollut.,
151 (2008) 477–485.
- M.J. Garcia-Martinez, L. Canoira, G. Blazquez, I.D. Riva,
R. Alcantara, J.F. Llamas, Continuous photodegradation of
naphthalene in water catalyzed by TiO2 supported on glass
Raschig rings, Chem. Eng. J., 110 (2005) 123–128.
- L. Antoine, F. Corinne, C. Jean-Marc, H. Jean-Marie, Naphthalene
degradation in water by heterogeneous photocatalysis: an
investigation of the influence of inorganic anions, J. Photochem.
Photobiol., A, 193 (2008) 193–203.
- E. Veignie, C. Rafin, D. Landy, S. Fourmentin, G. Surpateanu,
Fenton degradation assisted by cyclodextrins of a high
molecular weight polycyclic aromatic hydrocarbon benzo[a]
pyrene, J. Hazard. Mater., 168 (2009) 1296–1301.
- N. Vela, M. Martínez-Menchón, G. Navarro, G. Pérez-Lucas,
S. Navarro, Removal of polycyclic aromatic hydrocarbons
(PAHs) from groundwater by heterogeneous photocatalysis
under natural sunlight, J. Photochem. Photobiol., A, 232 (2012)
32–40.
- M. Pera-Titus, V. Garcia-Molina, M. Banos, J. Giménez,
S. Esplugas, Degradation of chlorophenols by means of
advanced oxidation processes: a general review, Appl. Catal., B,
47 (2004) 219–256.
- W. Qin, J. Qi, Y. Chen, H. Li, X. Wu, Visible light derived
N,S-codoped TiO2 photocatalysts grown by microplasma
oxidation method, J. Electrochem. Sci., 8 (2013) 7680–7686.
- S. Nandy, A. Banerjee, E. Fortunato, R. Martins, A review
on Cu2O and Cu based p-type semiconducting transparent
oxide materials, Rev. Adv. Sci. Eng., 2 (2013) 273–304.
- S. Murgolo, F. Petronella, R. Ciannarella, R. Comparelli,
A. Agostiano, M.L. Curri, G. Mascolo, UV and solar-based
photocatalytic degradation of organic pollutants by nanosized
TiO2 grown on carbon nanotubes, Catal. Today, 240 (2015)
114–124.
- B. Latkovaska, J. Figa, Cyanide removal from industrial
wastewater, Pol. J. Environ. Study, 16 (2007) 748–752.
- B. Wang, G. Zhang, X. Leng, Z. Sun, S. Zheng, Characterization
and improved solar light activity of vanadium doped
TiO2/diatomite hybrid catalysts, J. Hazard. Mater., 285 (2015)
212–220.
- J. Fan, Z. Zhao, W. Liu, Y. Xue, S. Yin, Solvothermal synthesis
of different phase N-TiO2 and their kinetics, isotherm and
thermodynamic studies on the adsorption of methyl orange,
J. Colloid Interface Sci., 470 (2016) 229–236.
- X.F. Lei, X.X. Xue, H. Yang, C. Chen, X. Li, J.X. Pei, M.C. Niu,
Y.T. Yang, X.Y. Gao, Visible light-responded C, N and S co-doped
anatase TiO2 for photocatalytic reduction of Cr(VI), J. Alloys
Compd., 646 (2015) 541–549.
- A. Khalilzadeh, S. Fatemi, Modification of nano-TiO2 by doping
with nitrogen and fluorine and study acetaldehyde removal
under visible light irradiation, Clean Technol. Environ. Policy,
16 (2014) 629–636.
- R. Fagan, D.E. McCormack, S. Hinder, S.C. Pillai, Improved
high temperature stability of anatase TiO2 photocatalysts
by N, F, P co-doping, Mater. Des., 96 (2016) 44–53.
- A. Jafari, M. Sadeghi, F. Tirgir, S.M. Borghaei, Sulfur and
nitrogen doped-titanium dioxide coated on glass microspheres
as a high performance catalyst for removal of naphthalene
(C10H8) from aqueous environments using photo oxidation
in the presence of visible and sunlight, Desal. Water Treat.,
192 (2020) 195–212.
- M. Iwase, K. Yamada, T. Kurisaki, O.O. Prieto-Mahaney,
B. Ohtani, H. Wakit, Visible-light photocatalysis with
phosphorus-doped titanium(IV) oxide particles prepared using
a phosphide compound, Appl. Catal., B, 132–133 (2013) 39–44.
- L. Korosi, I. Dekany, Preparation and investigation of
structural and photocatalytic properties of phosphate modified
titanium dioxide, Colloids Surf., A, 280 (2006) 146–154.
- L. Lin, W. Lin, Y. Zhu, B. Zhao, Y. Xie, Phosphor-doped titania
a novel photocatalyst active in visible light, Chem. Lett.,
34 (2005) 284–285.
- A. Bamoniri, B.F. Mirjalili, S. Nazemian, Nano silica phosphoric
acid: an efficient catalyst for the one-pot synthesis of amidoalkyl
naphthols under solvent-free condition, J. Iran.Chem. Soc.,
11 (2014) 653–658.
- R. Zheng, L. Line, J. Xie, Y. Zhu, Y. Xie, State of doped
phosphorus and its influence on the physicochemical and
photocatalytic properties of P-doped titania, J. Phys. Chem. C,
112 (2008) 15502–15509.
- L. Lin, W. Lin, J.L. Xie, Y.X. Zhu, B.Y. Zhao, Y.C. Xie,
Photocatalytic properties of phosphor-doped titania nanoparticles,
Appl. Catal. B, 75 (2007) 52–58.
- F. Mohamadi-Moghadam, M. Sadeghi, N. Masoudipour,
Degradation of cyanide using stabilized TiO2-S,N nanoparticles
by visible and sun light, J. Adv. Oxid. Technol., 21 (2018)
274–284.
- V. Mahmoodi, J. Sargolzae, Photocatalytic abatement of
naphthalene catalyzed by nanosized TiO2 particles: assessment
of operational parameters, Theor. Found. Chem. Eng., 48 (2014)
656–666.
- E.W. Rice, R.B. Baird, A.D. Eaton, L.S. Clesceri, Standard
Methods for the Examination of Water and Wastewater,
American Public Health Association, Washington, DC, 2005.
- L.Yingying, Y.b. Leshu, H. Heyong, L. Hailong, F. Yuying,
Preparation, characterization of P-doped TiO2 nanoparticles
and their excellent photocatalystic properties under the solar
light irradiation, J. Alloys Compd., 488 (2009) 314–319.
- R. Lopez, R. Gomez, Band-gap energy estimation from diffuse
reflectance measurements on sol–gel and commercial TiO2:
a comparative study, J. Sol-Gel. Sci. Technol., 61 (2012) 1–7.
- F. Li, Y. Jiang, M. Xia, M. Sun, B. Xue, D. Lin, X. Zhang, Effect
of the P/Ti ratio on the visible-light photocatalytic activity
of P-doped TiO2, J. Phys. Chem. C, 113 (2009) 18134–18141.
- K. Yang, Y. Dai, B. Huang, Understanding photocatalytic
activity of S- and P-doped TiO2 under visible light from
first-principles, J. Phys. Chem. C, 111 (2007) 18985–18994.
- Y.G. Montaser, S.J. Tarek, E.S. Ibrahim, R.S. Eglal, A.N. Rabab,
Treatment of highly polluted paper mill wastewater by solar
photocatalytic oxidation with synthesized nano TiO2, Chem.
Eng. J., 168 (2011) 446–454.
- D. Dong, P. Li, L. Xiaojun, Q. Zhao, Y. Zhang, C. Jia, P. Li,
Investigation on the photocatalytic degradation of pyrene
on soil surfaces using nanometer anatase TiO2 under UV
irradiation, J. Hazard. Mater., 174 (2009) 859–863.
- A. Durán, J.M. Monteagudo, Solar photocatalytic degradation
of reactive blue 4 using a Fresnel lens, Water Res., 41 (2006)
690–698.
- A. Lin, J.H. Hsueh, P. Hong, Removal of antineoplastic
drugs cyclophosphamide, ifosfamide, and 5-fluorouracil
and a vasodilator drug pentoxifylline from wastewaters by
ozonation, Environ. Sci. Pollut. Res. Int., 22 (2014) 508–515.
- D. Avisar, Y. Lester, H. Mamane, pH induced polychromatic
UV treatment for the removal of a mixture of SMX, OTC and
CIP from water, J. Hazard. Mater., 175 (2010) 1068–1074.
- J. Pettibone, D. Cwiertny, M. Scherer, V. Grassian, Adsorption of
organic acids on TiO2 nanoparticles: effects of pH, nanoparticle
size, and nanoparticle aggregation, Langmuir, 24 (2008)
6659–6667.
- A.G. Rincón, C. Pulgarin, Effect of pH, inorganic ions, organic
matter and H2O2 on E. coli K12 photocatalytic inactivation by
TiO2: implications in solar water disinfection, Appl. Catal., B,
51 (2004) 283–302.