References

  1. S. Fazlollahi, A. Hassani, M. Borghei, H. Pourzamani, Efficiency of multi-walled carbon nanotubes in TPH adsorption in aqueous solution, J. Environ. Sci. Technol., 19 (2017) 132–141.
  2. X. Zhou, D. Huang, G. Zeng, L. Chen, L. Qin, P. Xu, M. Cheng, C. Huang, C. Zhou, Preparation of water-compatible molecularly imprinted thiol-functionalized activated titanium dioxide: selective adsorption and efficient photodegradation of 2,4-dinitrophenol in aqueous solution, J. Hazard. Mater., 346 (2018) 113–123.
  3. USEPA, Health Effects Support Document for Naphthalene, Office of Water Health and Ecological Criteria Division, U.S. Environmental Protection Agency, Washington, DC, 2003.
  4. D. González, L. Ruiz, G. Garralón, F. Plaza, J. Arévalo, J. Parada, B. moreno, M. Angela-Gomes, Wastewater polycyclic aromatic hydrocarbons removal by membrane bioreactor, Desal. Water Treat., 42 (2012) 94–99.
  5. I. Manariotis, H. Karapanagioti, C. Chrysikopoulos, Degradation of PAHs by high frequency ultrasound, Water Res., 45 (2011) 2587–2594.
  6. F. Busetti, A. Heitz, M. Cuomo, S. Badoer, P. Traverso, Determination of sixteen polycyclic aromatic hydrocarbons in aqueous and solid samples from an Italian wastewater treatment plant, J. Chromatogr. A, 1102 (2006) 104–115.
  7. E. Manoli, C. Samara, The removal of polycyclic aromatic hydrocarbons in the wastewater treatment process: experimental calculations and model predictions, J. Environ. Pollut., 151 (2008) 477–485.
  8. M.J. Garcia-Martinez, L. Canoira, G. Blazquez, I.D. Riva, R. Alcantara, J.F. Llamas, Continuous photodegradation of naphthalene in water catalyzed by TiO2 supported on glass Raschig rings, Chem. Eng. J., 110 (2005) 123–128.
  9. L. Antoine, F. Corinne, C. Jean-Marc, H. Jean-Marie, Naphthalene degradation in water by heterogeneous photocatalysis: an investigation of the influence of inorganic anions, J. Photochem. Photobiol., A, 193 (2008) 193–203.
  10. E. Veignie, C. Rafin, D. Landy, S. Fourmentin, G. Surpateanu, Fenton degradation assisted by cyclodextrins of a high molecular weight polycyclic aromatic hydrocarbon benzo[a] pyrene, J. Hazard. Mater., 168 (2009) 1296–1301.
  11. N. Vela, M. Martínez-Menchón, G. Navarro, G. Pérez-Lucas, S. Navarro, Removal of polycyclic aromatic hydrocarbons (PAHs) from groundwater by heterogeneous photocatalysis under natural sunlight, J. Photochem. Photobiol., A, 232 (2012) 32–40.
  12. M. Pera-Titus, V. Garcia-Molina, M. Banos, J. Giménez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal., B, 47 (2004) 219–256.
  13. W. Qin, J. Qi, Y. Chen, H. Li, X. Wu, Visible light derived N,S-codoped TiO2 photocatalysts grown by microplasma oxidation method, J. Electrochem. Sci., 8 (2013) 7680–7686.
  14. S. Nandy, A. Banerjee, E. Fortunato, R. Martins, A review on Cu2O and Cu based p-type semiconducting transparent oxide materials, Rev. Adv. Sci. Eng., 2 (2013) 273–304.
  15. S. Murgolo, F. Petronella, R. Ciannarella, R. Comparelli, A. Agostiano, M.L. Curri, G. Mascolo, UV and solar-based photocatalytic degradation of organic pollutants by nanosized TiO2 grown on carbon nanotubes, Catal. Today, 240 (2015) 114–124.
  16. B. Latkovaska, J. Figa, Cyanide removal from industrial wastewater, Pol. J. Environ. Study, 16 (2007) 748–752.
  17. B. Wang, G. Zhang, X. Leng, Z. Sun, S. Zheng, Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts, J. Hazard. Mater., 285 (2015) 212–220.
  18. J. Fan, Z. Zhao, W. Liu, Y. Xue, S. Yin, Solvothermal synthesis of different phase N-TiO2 and their kinetics, isotherm and thermodynamic studies on the adsorption of methyl orange, J. Colloid Interface Sci., 470 (2016) 229–236.
  19. X.F. Lei, X.X. Xue, H. Yang, C. Chen, X. Li, J.X. Pei, M.C. Niu, Y.T. Yang, X.Y. Gao, Visible light-responded C, N and S co-doped anatase TiO2 for photocatalytic reduction of Cr(VI), J. Alloys Compd., 646 (2015) 541–549.
  20. A. Khalilzadeh, S. Fatemi, Modification of nano-TiO2 by doping with nitrogen and fluorine and study acetaldehyde removal under visible light irradiation, Clean Technol. Environ. Policy, 16 (2014) 629–636.
  21. R. Fagan, D.E. McCormack, S. Hinder, S.C. Pillai, Improved high temperature stability of anatase TiO2 photocatalysts by N, F, P co-doping, Mater. Des., 96 (2016) 44–53.
  22. A. Jafari, M. Sadeghi, F. Tirgir, S.M. Borghaei, Sulfur and nitrogen doped-titanium dioxide coated on glass microspheres as a high performance catalyst for removal of naphthalene (C10H8) from aqueous environments using photo oxidation in the presence of visible and sunlight, Desal. Water Treat., 192 (2020) 195–212.
  23. M. Iwase, K. Yamada, T. Kurisaki, O.O. Prieto-Mahaney, B. Ohtani, H. Wakit, Visible-light photocatalysis with phosphorus-doped titanium(IV) oxide particles prepared using a phosphide compound, Appl. Catal., B, 132–133 (2013) 39–44.
  24. L. Korosi, I. Dekany, Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide, Colloids Surf., A, 280 (2006) 146–154.
  25. L. Lin, W. Lin, Y. Zhu, B. Zhao, Y. Xie, Phosphor-doped titania a novel photocatalyst active in visible light, Chem. Lett., 34 (2005) 284–285.
  26. A. Bamoniri, B.F. Mirjalili, S. Nazemian, Nano silica phosphoric acid: an efficient catalyst for the one-pot synthesis of amidoalkyl naphthols under solvent-free condition, J. Iran.Chem. Soc., 11 (2014) 653–658.
  27. R. Zheng, L. Line, J. Xie, Y. Zhu, Y. Xie, State of doped phosphorus and its influence on the physicochemical and photocatalytic properties of P-doped titania, J. Phys. Chem. C, 112 (2008) 15502–15509.
  28. L. Lin, W. Lin, J.L. Xie, Y.X. Zhu, B.Y. Zhao, Y.C. Xie, Photocatalytic properties of phosphor-doped titania nanoparticles, Appl. Catal. B, 75 (2007) 52–58.
  29. F. Mohamadi-Moghadam, M. Sadeghi, N. Masoudipour, Degradation of cyanide using stabilized TiO2-S,N nanoparticles by visible and sun light, J. Adv. Oxid. Technol., 21 (2018) 274–284.
  30. V. Mahmoodi, J. Sargolzae, Photocatalytic abatement of naphthalene catalyzed by nanosized TiO2 particles: assessment of operational parameters, Theor. Found. Chem. Eng., 48 (2014) 656–666.
  31. E.W. Rice, R.B. Baird, A.D. Eaton, L.S. Clesceri, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, 2005.
  32. L.Yingying, Y.b. Leshu, H. Heyong, L. Hailong, F. Yuying, Preparation, characterization of P-doped TiO2 nanoparticles and their excellent photocatalystic properties under the solar light irradiation, J. Alloys Compd., 488 (2009) 314–319.
  33. R. Lopez, R. Gomez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study, J. Sol-Gel. Sci. Technol., 61 (2012) 1–7.
  34. F. Li, Y. Jiang, M. Xia, M. Sun, B. Xue, D. Lin, X. Zhang, Effect of the P/Ti ratio on the visible-light photocatalytic activity of P-doped TiO2, J. Phys. Chem. C, 113 (2009) 18134–18141.
  35. K. Yang, Y. Dai, B. Huang, Understanding photocatalytic activity of S- and P-doped TiO2 under visible light from first-principles, J. Phys. Chem. C, 111 (2007) 18985–18994.
  36. Y.G. Montaser, S.J. Tarek, E.S. Ibrahim, R.S. Eglal, A.N. Rabab, Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2, Chem. Eng. J., 168 (2011) 446–454.
  37. D. Dong, P. Li, L. Xiaojun, Q. Zhao, Y. Zhang, C. Jia, P. Li, Investigation on the photocatalytic degradation of pyrene on soil surfaces using nanometer anatase TiO2 under UV irradiation, J. Hazard. Mater., 174 (2009) 859–863.
  38. A. Durán, J.M. Monteagudo, Solar photocatalytic degradation of reactive blue 4 using a Fresnel lens, Water Res., 41 (2006) 690–698.
  39. A. Lin, J.H. Hsueh, P. Hong, Removal of antineoplastic drugs cyclophosphamide, ifosfamide, and 5-fluorouracil and a vasodilator drug pentoxifylline from wastewaters by ozonation, Environ. Sci. Pollut. Res. Int., 22 (2014) 508–515.
  40. D. Avisar, Y. Lester, H. Mamane, pH induced polychromatic UV treatment for the removal of a mixture of SMX, OTC and CIP from water, J. Hazard. Mater., 175 (2010) 1068–1074.
  41. J. Pettibone, D. Cwiertny, M. Scherer, V. Grassian, Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation, Langmuir, 24 (2008) 6659–6667.
  42. A.G. Rincón, C. Pulgarin, Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2: implications in solar water disinfection, Appl. Catal., B, 51 (2004) 283–302.