References

  1. M.S. Islam, M.K. Ahmad, M. Rakmuzzaman, M. Habibullah-Al-Mamun, M.K. Islam, Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country, Ecol. Indic., 48 (2015) 282–291.
  2. T. Huo, G. Lu, Y. Wang, L. Ren, A studies on impact of livestock and poultry breeding pollution on water environment safety in Shandong Province, Adv. Water Resour. Hydraul. Eng., 1 (2009) 525–530.
  3. M. Wu, X. Tang, Q. Li, W. Yang, F. Jin, M. Tang, M. Sholz, Review of ecological engineering solutions for rural non-point source water pollution control in Hubei Province, China, Water Air Soil Pollut., 224 (2013), doi: 10.1007/s11270-013-1561-x.
  4. M. Arefi, M. Darvish, Optimal Utilization of Interior Water Capacity of Desertification Bearing, The Second National Conference and Various Methods of Desertification, 1995, pp. 121–127 (in Persian).
  5. M. Abdel-aziz, E.Z. EL-Ashtoukhy, M.S. Zoromba, M. Bassyouni, G. Sedahmed, Removal of nitrates from water by electrocoagulation using a cell with horizontally oriented Al serpentine tube anode, J. Ind. Eng. Chem., 82 (2020) 105–112.
  6. R. Li, C. Feng, W. Hu, B. Xi, N. Chen, B. Zhao, Y. Liu, C. Hao, J. Pu, Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation, Water Res. J., 89 (2016) 171–179.
  7. S. Jung, S. Bae, W. Lee, Development of Pd–Cu/hematite catalyst for selective nitrate reduction, Environ. Sci. Technol., 48 (2014) 9651–9658.
  8. S.C. McCutcheon, J.L. Schnoor, Phytoremediation Transformation and Control of Contaminants, John Wiley and Sons, New York, NY, 2003, pp. 33–38.
  9. F. Garcia-Avila, J. Patino-Chávez, F. Zhinín-Chimbo, S. Donoso-Moscoso, L. Flores Del Pino, A. Aviles-Añazco, Performance of Phragmites australis and Cyperus papyrus in the treatment of municipal wastewater by vertical flow subsurface constructed wetlands, Int. Soil Water Conserv. Res., 7 (2019) 286–296.
  10. L.J. Fox, P.C. Struik, B.L. Appleton, H.J. Rule, Nitrogen phytoremediation by water hyacinth (Eichhornia crassipes (Mart.) Solms), Water Air Soil Pollut., 194 (2008) 199–207.
  11. Z. Yousefi, A. Mesdaghinia, M. Ghyasedin, The role of water hyacinth in bacterial removel at the subsurface artificial wetland, J. Mazandaran Univ. Med. Sci., 11 (2001) 7–15 (In Persian).
  12. H. Sedaghat, Nitrate Removal from the Water Using the Sunflower and Corn Stem (Stalk), National Institute of Talents, 2013, pp. 15–19 (in Persian).
  13. E. Maxwell, E.W. Peterson, M.O. Catherine, Enhanced nitrate reduction within a constructed wetland system: nitrate removal within groundwater flow, Wetlands, 37 (2017) 413–422.
  14. T. Saeed, B. Paul, R. Afrin, A. Al-Muyeed, G. Sun, Floating constructed wetland for the treatment of polluted river water: a pilot scale study on seasonal variation and shock load, Chem. Eng. J., 287 (2016) 62–73.
  15. Y. Chen, Y. Wen, J. Cheng, C.H. Xue, D.H. Yang, Q. Zhou, Effects of dissolved oxygen on extracellular enzymes activities and transformation of carbon sources from plant biomass: implications for denitrification in constructed wetlands, Bioresour. Technol., 102 (2011) 2433–2440.
  16. R.H. Kadlec, R.L. Knight, Treatment Wetlands, CRC Press, Lewis Publishers, Florida, 1996.
  17. J. Persson, H.B. Wittgren, How hydrological and hydraulic conditions affect performance of ponds, Ecol. Eng., 21 (2003) 259–269.
  18. APHA, Standard Methods for the Examination of Water and Wastewater, 21th ed., American Public Health Association, Washington, DC, 2005.
  19. Y.F. Lin, S.R. Jing, D.Y. Lee, Constructed wetlands for water pollution management of aquaculture farms conducting earthen pond culture, Water Environ. Res., 82 (2010) 759–768.
  20. X. Liu, T.F. Tang, S.L. Huang, Y. Luo, Image Processing Based Non-Destructive Method for Measuring Growth of Constructed Wetland Plants, 2011 5th International Conference on Bioinformatics and Biomedical Engineering, Wuhan, 2011, pp. 1–4.
  21. S. Khosh Navazaz, S. Bromand Nasab, H. Moezed, E. Naseri, P. Ezazde, Removal of sewage phosphate from Karoun Agro Industry & Industry Co., using vytaur plants in artificial surface wetland, Iran. J. Water Soil Res., 46 (2015) 509–518.
  22. F. Falahi, B. Ayati, H. Ganji Doost, Nitrate removal by the phytoremediation process in experimental scale, J. Water Waste, 1 (2012) 57 (in Persian).
  23. C. Picard, H.L. Fraser, D. Steer, The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms, Bioresour. Technol., 96 (2005) 1039–1047.
  24. J. Vymazal, Constructed wetlands for wastewater treatment in the Czech Republic, Water Sci. Technol., 44 (2001) 369–374.
  25. R.G. Hunter, D.L. Combs, D.B. George, Nitrogen, phosphorous, and organic carbon removal in simulated wetland treatment systems, J. Environ. Contam. Toxicol., 41 (2001) 274–281.
  26. O.R. Zimmo, N.P. Van der Steen, H.J. Gijzen, Nitrogen mass balance across pilot-scale algae and duckweed-based wastewater stabilisation ponds, Water Res., 3 (2004) 913–920.
  27. H. Chang, X. Yang, H. Fang, In situ nitrogen removal from the eutrophic water by microbial plant intergrated system, J. Zhejiang Univ. Sci., 17 (2009) 521–531.
  28. A. Almeida, F. Carvalho, M. Imaginario, I. Castanheira, R. Prazeres, C. Ribeiro, Nitrate removal in vertical flow constructed wetland planted with Vetiveria zizanioides: effect of hydraulic load, Ecol. Eng., 99 (2017) 535–542.