References

  1. S.R.S. Bandaru, A. Roy, A.J. Gadgil, C.M. van Genuchten, Long-term electrode behavior during treatment of arsenic contaminated groundwater by a pilot-scale iron electrocoagulation system, Water Res., 175 (2020) 10, doi: 10.1016/ j.watres.2020.115668.
  2. X. Chen, P. Ren, T. Li, J.P. Trembly, X. Liu, Zinc removal from model wastewater by electrocoagulation: processing, kinetics and mechanism, Chem. Eng. J., 349 (2018) 358–367.
  3. J. Bao, W.J. Yu, Y. Liu, X. Wang, Z.Q. Liu, Y.F. Duan, Removal of perfluoroalkanesulfonic acids (PFSAs) from synthetic and natural groundwater by electrocoagulation, Chemosphere, 248 (2020) 7, doi: 10.1016/j.chemosphere.2020.125951.
  4. M.A. Sandoval, R. Fuentes, A. Thiam, R. Salazar, Arsenic and fluoride removal by electrocoagulation process: a general review, Sci. Total Environ., 753 (2021) 142108, doi: 10.1016/j. scitotenv.2020.142108.
  5. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  6. L.F. Castaneda, O. Coreno, J.L. Nava, G. Carreno, Removal of fluoride and hydrated silica from underground water by electrocoagulation in a flow channel reactor, Chemosphere, 244 (2020), doi: 10.1016/j.chemosphere.2019.125417.
  7. C.D. Dong, M. Raj, Removal mechanism and effective current of electrocoagulation for treating wastewater containing Ni(II), Cu(II), and Cr(VI), Water, 12 (2020) 2614, doi: 10.3390/ w12092614.
  8. J. Lu, Y. Li, M. Yin, X. Ma, S. Lin, Removing heavy metal ions with continuous aluminum electrocoagulation: a study on back mixing and utilization rate of electro-generated Al ions, Chem. Eng. J., 267 (2015) 86–92.
  9. J. Lu, Z. Wang, X. Ma, Q. Tang, Y. Li, Modeling of the electrocoagulation process: a study on the mass transfer of electrolysis and hydrolysis products, Chem. Eng. Sci., 165 (2017) 165–176.
  10. D. Lakshmanan, D. Clifford, G. Samanta, Ferrous and ferric ion generation during iron electrocoagulation, Environ. Sci. Technol., 43 (2009) 3853–3859.
  11. L.F. Castaneda, O. Coreno, J.L. Nava, Simultaneous elimination of hydrated silica, arsenic and phosphates from real groundwater by electrocoagulation using a cascade-shaped up-flow reactor, Electrochim. Acta, 331 (2020) 8, doi: 10.1016/j. electacta.2019.135365.
  12. A. Akyol, Treatment of paint manufacturing wastewater by electrocoagulation, Desalination, 285 (2012) 91–99.
  13. M. Chen, O. Dollar, K. Shafer-Peltier, S. Randtke, S. Waseem, E. Peltier, Boron removal by electrocoagulation: removal mechanism, adsorption models and factors influencing removal, Water Res., 170 (2020) 11, doi: 10.1016/j.watres.2019.115362.
  14. N.S. Graca, A.M. Ribeiro, A.E. Rodrigues, Removal of fluoride from water by a continuous electrocoagulation process, Ind. Eng. Chem. Res., 58 (2019) 5314–5321.
  15. M.M. Emamjomeh, M. Sivakumar, A.S. Varyani, Analysis and the understanding of fluoride removal mechanisms by an electrocoagulation/flotation (ECF) process, Desalination, 275 (2011) 102–106.
  16. F. Widhiastuti, J.Y. Lin, Y.J. Shih, Y.H. Huang, Electrocoagulation of boron by electrochemically co-precipitated spinel ferrites, Chem. Eng. J., 350 (2018) 893–901.
  17. Z. Al-Qodah, M. Al-Shannag, Heavy metal ions removal from wastewater using electrocoagulation processes: a comprehensive review, Sep. Sci. Technol., 52 (2017) 2649–2676.
  18. L. Xu, X. Xu, D. Wu, Initial dissolved oxygen-adjusted electrochemical generation of sulfate green rust for cadmium removal using a closed-atmosphere Fe–electrocoagulation system, Chem. Eng. J., 359 (2019) 1411–1418.
  19. P. Nuñez, H.K. Hansen, S. Aguirre, C. Maureira, Electrocoagulation of arsenic using iron nanoparticles to treat copper mineral processing wastewater, Sep. Purif. Technol., 79 (2011) 285–290.
  20. J. Lu, Z.R. Wang, Y.L. Liu, Q. Tang, Removal of Cr ions from aqueous solution using batch electrocoagulation: Cr removal mechanism and utilization rate of in situ generated metal ions, Process Saf. Environ. Prot., 104 (2016) 436–443.
  21. S.Y. Lee, G.A. Gagnon, Growth and structure of flocs following electrocoagulation, Sep. Purif. Technol., 163 (2016) 162–168.
  22. K. Dubrawski, C. Genuchten, C. Delaire, S. Amrose, A. Gadgil, M. Mohseni, Production and transformation of mixed-valent nanoparticles generated by Fe(0) electrocoagulation, Environ. Sci. Technol., 49 (2015) 2171–2179.
  23. C.M. van Genuchten, J. Peña, S.E. Amrose, A.J. Gadgil, Structure of Fe(III) precipitates generated by the electrolytic dissolution of Fe(0) in the presence of groundwater ions, Geochim. Cosmochim. Acta, 127 (2014) 285–304.
  24. M.H. Abdel-Aziz, E.S.Z. El-Ashtoukhy, M.S. Zoromba, M. Bassyouni, G.H. Sedahmed, Removal of nitrates from water by electrocoagulation using a cell with horizontally oriented Al serpentine tube anode, J. Ind. Eng. Chem., 82 (2020) 105–112.
  25. H. Chow, A.L.T. Pham, Effective removal of silica and sulfide from oil sands thermal in-situ produced water by electrocoagulation, J. Hazard. Mater., 380 (2019) 7, doi: 10.1016/j. jhazmat.2019.120880.
  26. A.Y. Kilany, S.A. Nosier, M. Hussein, M.H. Abdel-Aziz, G.H. Sedahmed, Combined oil demulsification and copper removal from copper plating plant effluents by electrocoagulation in a new cell design, Sep. Purif. Technol., 248 (2020) 10, doi: 10.1016/j.seppur.2020.117056.
  27. F. Özyonar, Ö. Gökkuş, M. Sabuni, Removal of disperse and reactive dyes from aqueous solutions using ultrasoundassisted electrocoagulation, Chemosphere, 258 (2020) 127325, doi: 10.1016/j.chemosphere.2020.127325.
  28. J. Lu, Z. Yang, J. Chen, K. Xu, T. Yang, J. Zhang, Modeling of the mass transfer in continuous electrocoagulation process with bipolar electrodes, Desal. Water Treat., 136 (2018) 452–459.
  29. M. Ingelsson, N. Yasri, E.P.L. Roberts, Electrode passivation, faradaic efficiency, and performance enhancement strategies in electrocoagulation—a review, Water Res., 187 (2020) 116433, doi: 10.1016/j.watres.2020.116433.
  30. P. Chanikya, P.V. Nidheesh, D. Syam Babu, A. Gopinath, M. Suresh Kumar, Treatment of dyeing wastewater by combined sulfate radical based electrochemical advanced oxidation and electrocoagulation processes, Sep. Purif. Technol., 254 (2021) 117570, doi: 10.1016/j.seppur.2020.117570.
  31. P. Li, P. Chen, G.H. Wang, L.Z. Wang, X.G. Wang, Y.R. Li, W.M. Zhang, H. Jiang, H. Chen, Uranium elimination and recovery from wastewater with ligand chelation-enhanced electrocoagulation, Chem. Eng. J., 393 (2020) 9, doi: 10.1016/j. cej.2020.124819.
  32. D. Ghernaout, Advanced oxidation phenomena in electrocoagulation process: a myth or a reality?, Desal. Water Treat., 51 (2013) 7536–7554.
  33. A.Y. Goren, M. Kobya, M.S. Oncel, Arsenite removal from groundwater by aerated electrocoagulation reactor with Al ball electrodes: human health risk assessment, Chemosphere, 251 (2020) 126363, doi: 10.1016/j.chemosphere.2020.126363.
  34. A.K. Golder, A.N. Samanta, S. Ray, Anionic reactive dye removal from aqueous solution using a new adsorbent—Sludge generated in removal of heavy metal by electrocoagulation, Chem. Eng. J., 122 (2006) 107–115.
  35. J. Lu, Q. Tang, Z.R. Wang, C. Xu, S.L. Lin, A study on continuous and batch electrocoagulation process for fluoride removal, Desal. Water Treat., 57 (2016) 28417–28425.
  36. N. Ben Grich, A. Attour, M. Le Page Mostefa, S. Guesmi, M. Tlili, F. Lapicque, Fluoride removal from water by electrocoagulation: effect of the type of water and the experimental parameters, Electrochim. Acta, 316 (2019) 257–265.