References
- L.S. Birnbaum, D.F. Staskal, Brominated flame retardants:
cause for concern?, Environ. Health Perspect., 112 (2004) 9–17.
- S. Posner, Guidance on Alternative Flame Retardants to the
Use of Commercial Pentabromodiphenylether (c-PentaBDE),
Norwegian Pollution Control Authority (SFT), United Nations
Environment Programme, United Nations, 2009.
- T. Grover, A. Khandual, K.N. Chatterjee, R. Jamdagni, Flame
retardants: an overview, Colourage, 61 (2014) 29–36.
- A.R. Horrocks, D. Price, Fire Retardant Materials, Woodhead
Publishing, England, 2001.
- I. van der Veen, J. de Boer, Phosphorus flame retardants:
properties, production, environmental occurrence, toxicity and
analysis, Chemosphere, 88 (2012) 1119–1153.
- S.D. Shaw, A. Blum, R. Weber, K. Kannan, D. Rich, D. Lucas,
C.P. Koshland, D. Dobraca, S. Hanson, L.S. Birnbaum,
Halogenated flame retardants: do the fire safety benefits justify
the risks?, Rev. Environ. Health, 25 (2010) 261–306.
- A. Innes, J. Innes, Flame Retardants, In: Applied Plastics
Engineering Handbook, William Andrew Publishing, 2011,
pp. 469–485.
- E.D. Weil, S.V. Levchik, Flame retardants in commercial use or
development for polyolefins, J. Fire Sci., 26 (2008) 5–43.
- G.A. Knudsen, M.F. Hughes, K.L. McIntosh, J.M. Sanders,
L.S. Birnbaum, Estimation of Tetrabromobisphenol A (TBBPA)
percutaneous uptake in humans using the parallelogram
method, Toxicol. Appl. Pharmacol., 289 (2015) 323–329.
- T. Hamers, J.H. Kamstra, E. Sonneveld, A.J. Murk,
M.H.A. Kester, P.L. Andersson, J. Legler, A. Brouwer, In vitro
profiling of the endocrine-disrupting potency of brominated
flame retardants, Toxicol. Sci., 92 (2006) 157–173.
- M. Döring, J. Diederichs, Halogen-free Flame Retardants in
E&E Applications, Forschungszentrum Karlsruhe, Germany,
2007.
- A.B. Morgan, J.W. Gilman, An overview of flame retardancy
of polymeric materials: application, technology, and future
directions, Fire Mater. Int. J., 37 (2013) 259–279.
- W. Wanzke, B. Nass, O. Schacker, E. Schlosser, Phosphorus
containing flame retardants—compounding and material
properties, In Flame Retardants, 10 (2002) 63–74.
- G. Camino, L. Costa, L. Trossarelli, Study of the mechanism
of intumescence in fire retardant polymers: Part I—thermal
degradation of ammonium polyphosphate-pentaerythritol
mixtures, Polym. Degrad. Stab., 6 (1984) 243–252.
- C.D. Papaspyrides, P. Kiliaris, Polymer Green Flame Retardants,
Elsevier, UK, 2014.
- S. Hörold, Phosphorus-Based and Intumescent Flame
Retardants, In: Polymer Green Flame Retardants, Elsevier,
USA, 2014, pp. 221–254.
- M. Lewin, E.D. Weil, Mechanisms and modes of action in
flame retardancy of polymers, Fire Retardant Mater., 1 (2014)
31–68.
- N. Honda, T. Sugiyama, Halogen-Free Flame-Retardant Epoxy
Resin Composition, U.S. Patent No. 5,994,429, Patent and
Trademark Office, Washington DC, U.S., 1999.
- M. Sorais, M.J. Mazerolle, J.-F. Giroux, J. Verreault, Landfills
represent significant atmospheric sources of exposure to
halogenated flame retardants for urban-adapted gulls, Environ.
Int., 135 (2020) 105387, doi: 10.1016/j.envint.2019.105387.
- European Union, Restriction of Hazardous Substances
Directive, 2002.
- W. Yan, L., Yan, J.M. Duan, C.Y. Jing, Sorption of organophosphate
esters by carbon nanotubes, J. Hazard. Mater., 273 (2014) 53–60.
- World Health Organization, Flame Retardants: Tris
(chloropropyl) Phosphate and Tris(2-chloroethyl) Phosphate,
Environmental Health Criteria, Geneva, 1998.
- X.H. Ren, Y.J. Lee, H.J. Han, I.S. Kim, Effect of tris-(2-chloroethyl)-
phosphate (TCEP) at environmental concentration on the levels
of cell cycle regulatory protein expression in primary cultured
rabbit renal proximal tubule cells, Chemosphere, 74 (2008) 84–88.
- D. Saint-Hilaire, K.Z. Ismail, U. Jans, Reaction of tris(2-chloroethyl) phosphate with reduced sulfur species,
Chemosphere, 83 (2011) 941–947.
- M.Y. Kiliç, K. Kestioğlu, Endüstriyel Atiksularin Aritiminda Ileri
Oksidasyon Proseslerinin Uygulanabilirliğinin Araştirilmasi,
Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi,
13, 2008.
- Ş. Kaya, Y. Aşçı, Evaluation of Color and COD removal by
Fenton and photo-Fenton processes from industrial paper
wastewater, J. Inst. Sci. Technol., 9 (2019) 1539–1550.
- S. Ameta, R. Ameta, Advanced Oxidation Processes for
Wastewater Treatment: Emerging Green Chemical Technology,
Academic Press, Elsevier, USA, 2018.
- N. Kocakaplan, N.E. Ertugay, E. Malkoç, Removal of acid yellow
36 dyestuff with Fenton and Fenton-like advanced oxidation
methods, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi,
4 (2014) 41–48.
- G. Ruppert, R. Bauer, G. Heisler, The photo-Fenton reaction
— an effective photochemical wastewater treatment process,
J. Photochem. Photobiol., A, 73 (1993) 75–78.
- J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation
processes for organic contaminant destruction based on the
Fenton reaction and related chemistry, Crit. Rev. Env. Sci.
Technol., 36 (2006) 1–84.
- E. Gürtekin, Bir İleri Oksidasyon Prosesi: Fenton Proses,
Pamukkale Üniversitesi Muh. Bilim Dergisi., 14 (2008) 229–236.
- H. Hansson, F. Kaczala, M. Marques, W. Hogland, Photo-Fenton and Fenton oxidation of recalcitrant wastewater from
the wooden floor industry, Water Environ. Res., 87 (2015)
491–497.
- A.S. Koparal, Sulardan Ultrases, Fenton ve Sono-Fenton
Prosesleri ile Renk Giderimi, Anadolu University of Sciences &
Technology-B: Theoretical Sciences, 6 (2018) 164–176.
- M.I. Litter, Introduction to Photochemical Advanced
Oxidation Processes for Water Treatment, In: Environmental
Photochemistry Part II, Springer, Berlin, Heidelberg, 2005,
pp. 325–366.
- M.J. Watts, K.G. Linden, Photooxidation and subsequent
biodegradability of recalcitrant tri-alkyl phosphates TCEP and
TBP in water, Water Res., 42 (2008) 4949–4954.
- A.M. Abdullah, K.E. O’Shea, TiO2 photocatalytic degradation
of the flame retardant tris(2-chloroethyl) phosphate (TCEP)
in aqueous solution: a detailed kinetic and mechanistic study,
J. Photochem. Photobiol., A, 377 (2019) 130–137.
- X.C. Ruan, R. Ai, X. Jin, Q.F. Zeng, Z.Y. Yang, Photodegradation
of tri(2-chloroethyl) phosphate in aqueous solution by UV/H2O2, Water Air Soil Pollut., 224 (2013) 1406, doi: 10.1007/
s11270-012-1406-z.
- S.G. Cetinkaya, M.H. Morcali, S. Akarsu, C.A. Ziba, M. Dolaz,
Comparison of classic Fenton with ultrasound Fenton processes
on industrial textile wastewater, Sustainable Environ. Res.,
28 (2018) 165–170.
- E. Basturk, M. Karatas, Advanced oxidation of Reactive Blue
181 solution: a comparison between Fenton and Sono-Fenton
Process, Ultrason. Sonochem., 21 (2014) 1881–1885.
- X.X. Xu, J. Chen, R.J. Qu, Z.Y. Wang, Oxidation of tris(2-chloroethyl) phosphate in aqueous solution by UV-activated
peroxymonosulfate: kinetics, water matrix effects, degradation
products and reaction pathways, Chemosphere, 185 (2017)
833–843.
- J. Liu, J.S. Ye, Y.F. Chen, C.S. Li, H.S. Ou, UV-driven hydroxyl
radical oxidation of tris(2-chloroethyl) phosphate: intermediate
products and residual toxicity, Chemosphere, 190 (2018)
225–233.
- J.S. Ye, J. Liu, C.S. Li, P.L. Zhou, S. Wu, H. Ou, Heterogeneous
photocatalysis of tris(2-chloroethyl) phosphate by UV/TiO2:
degradation products and impacts on bacterial proteome,
Water Res., 124 (2017) 29–38.