References

  1. L.S. Birnbaum, D.F. Staskal, Brominated flame retardants: cause for concern?, Environ. Health Perspect., 112 (2004) 9–17.
  2. S. Posner, Guidance on Alternative Flame Retardants to the Use of Commercial Pentabromodiphenylether (c-PentaBDE), Norwegian Pollution Control Authority (SFT), United Nations Environment Programme, United Nations, 2009.
  3. T. Grover, A. Khandual, K.N. Chatterjee, R. Jamdagni, Flame retardants: an overview, Colourage, 61 (2014) 29–36.
  4. A.R. Horrocks, D. Price, Fire Retardant Materials, Woodhead Publishing, England, 2001.
  5. I. van der Veen, J. de Boer, Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis, Chemosphere, 88 (2012) 1119–1153.
  6. S.D. Shaw, A. Blum, R. Weber, K. Kannan, D. Rich, D. Lucas, C.P. Koshland, D. Dobraca, S. Hanson, L.S. Birnbaum, Halogenated flame retardants: do the fire safety benefits justify the risks?, Rev. Environ. Health, 25 (2010) 261–306.
  7. A. Innes, J. Innes, Flame Retardants, In: Applied Plastics Engineering Handbook, William Andrew Publishing, 2011, pp. 469–485.
  8. E.D. Weil, S.V. Levchik, Flame retardants in commercial use or development for polyolefins, J. Fire Sci., 26 (2008) 5–43.
  9. G.A. Knudsen, M.F. Hughes, K.L. McIntosh, J.M. Sanders, L.S. Birnbaum, Estimation of Tetrabromobisphenol A (TBBPA) percutaneous uptake in humans using the parallelogram method, Toxicol. Appl. Pharmacol., 289 (2015) 323–329.
  10. T. Hamers, J.H. Kamstra, E. Sonneveld, A.J. Murk, M.H.A. Kester, P.L. Andersson, J. Legler, A. Brouwer, In vitro profiling of the endocrine-disrupting potency of brominated flame retardants, Toxicol. Sci., 92 (2006) 157–173.
  11. M. Döring, J. Diederichs, Halogen-free Flame Retardants in E&E Applications, Forschungszentrum Karlsruhe, Germany, 2007.
  12. A.B. Morgan, J.W. Gilman, An overview of flame retardancy of polymeric materials: application, technology, and future directions, Fire Mater. Int. J., 37 (2013) 259–279.
  13. W. Wanzke, B. Nass, O. Schacker, E. Schlosser, Phosphorus containing flame retardants—compounding and material properties, In Flame Retardants, 10 (2002) 63–74.
  14. G. Camino, L. Costa, L. Trossarelli, Study of the mechanism of intumescence in fire retardant polymers: Part I—thermal degradation of ammonium polyphosphate-pentaerythritol mixtures, Polym. Degrad. Stab., 6 (1984) 243–252.
  15. C.D. Papaspyrides, P. Kiliaris, Polymer Green Flame Retardants, Elsevier, UK, 2014.
  16. S. Hörold, Phosphorus-Based and Intumescent Flame Retardants, In: Polymer Green Flame Retardants, Elsevier, USA, 2014, pp. 221–254.
  17. M. Lewin, E.D. Weil, Mechanisms and modes of action in flame retardancy of polymers, Fire Retardant Mater., 1 (2014) 31–68.
  18. N. Honda, T. Sugiyama, Halogen-Free Flame-Retardant Epoxy Resin Composition, U.S. Patent No. 5,994,429, Patent and Trademark Office, Washington DC, U.S., 1999.
  19. M. Sorais, M.J. Mazerolle, J.-F. Giroux, J. Verreault, Landfills represent significant atmospheric sources of exposure to halogenated flame retardants for urban-adapted gulls, Environ. Int., 135 (2020) 105387, doi: 10.1016/j.envint.2019.105387.
  20. European Union, Restriction of Hazardous Substances Directive, 2002.
  21. W. Yan, L., Yan, J.M. Duan, C.Y. Jing, Sorption of organophosphate esters by carbon nanotubes, J. Hazard. Mater., 273 (2014) 53–60.
  22. World Health Organization, Flame Retardants: Tris (chloropropyl) Phosphate and Tris(2-chloroethyl) Phosphate, Environmental Health Criteria, Geneva, 1998.
  23. X.H. Ren, Y.J. Lee, H.J. Han, I.S. Kim, Effect of tris-(2-chloroethyl)- phosphate (TCEP) at environmental concentration on the levels of cell cycle regulatory protein expression in primary cultured rabbit renal proximal tubule cells, Chemosphere, 74 (2008) 84–88.
  24. D. Saint-Hilaire, K.Z. Ismail, U. Jans, Reaction of tris(2-chloroethyl) phosphate with reduced sulfur species, Chemosphere, 83 (2011) 941–947.
  25. M.Y. Kiliç, K. Kestioğlu, Endüstriyel Atiksularin Aritiminda Ileri Oksidasyon Proseslerinin Uygulanabilirliğinin Araştirilmasi, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 13, 2008.
  26. Ş. Kaya, Y. Aşçı, Evaluation of Color and COD removal by Fenton and photo-Fenton processes from industrial paper wastewater, J. Inst. Sci. Technol., 9 (2019) 1539–1550.
  27. S. Ameta, R. Ameta, Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, Academic Press, Elsevier, USA, 2018.
  28. N. Kocakaplan, N.E. Ertugay, E. Malkoç, Removal of acid yellow 36 dyestuff with Fenton and Fenton-like advanced oxidation methods, Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4 (2014) 41–48.
  29. G. Ruppert, R. Bauer, G. Heisler, The photo-Fenton reaction — an effective photochemical wastewater treatment process, J. Photochem. Photobiol., A, 73 (1993) 75–78.
  30. J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Env. Sci. Technol., 36 (2006) 1–84.
  31. E. Gürtekin, Bir İleri Oksidasyon Prosesi: Fenton Proses, Pamukkale Üniversitesi Muh. Bilim Dergisi., 14 (2008) 229–236.
  32. H. Hansson, F. Kaczala, M. Marques, W. Hogland, Photo-Fenton and Fenton oxidation of recalcitrant wastewater from the wooden floor industry, Water Environ. Res., 87 (2015) 491–497.
  33. A.S. Koparal, Sulardan Ultrases, Fenton ve Sono-Fenton Prosesleri ile Renk Giderimi, Anadolu University of Sciences & Technology-B: Theoretical Sciences, 6 (2018) 164–176.
  34. M.I. Litter, Introduction to Photochemical Advanced Oxidation Processes for Water Treatment, In: Environmental Photochemistry Part II, Springer, Berlin, Heidelberg, 2005, pp. 325–366.
  35. M.J. Watts, K.G. Linden, Photooxidation and subsequent biodegradability of recalcitrant tri-alkyl phosphates TCEP and TBP in water, Water Res., 42 (2008) 4949–4954.
  36. A.M. Abdullah, K.E. O’Shea, TiO2 photocatalytic degradation of the flame retardant tris(2-chloroethyl) phosphate (TCEP) in aqueous solution: a detailed kinetic and mechanistic study, J. Photochem. Photobiol., A, 377 (2019) 130–137.
  37. X.C. Ruan, R. Ai, X. Jin, Q.F. Zeng, Z.Y. Yang, Photodegradation of tri(2-chloroethyl) phosphate in aqueous solution by UV/H2O2, Water Air Soil Pollut., 224 (2013) 1406, doi: 10.1007/ s11270-012-1406-z.
  38. S.G. Cetinkaya, M.H. Morcali, S. Akarsu, C.A. Ziba, M. Dolaz, Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater, Sustainable Environ. Res., 28 (2018) 165–170.
  39. E. Basturk, M. Karatas, Advanced oxidation of Reactive Blue 181 solution: a comparison between Fenton and Sono-Fenton Process, Ultrason. Sonochem., 21 (2014) 1881–1885.
  40. X.X. Xu, J. Chen, R.J. Qu, Z.Y. Wang, Oxidation of tris(2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: kinetics, water matrix effects, degradation products and reaction pathways, Chemosphere, 185 (2017) 833–843.
  41. J. Liu, J.S. Ye, Y.F. Chen, C.S. Li, H.S. Ou, UV-driven hydroxyl radical oxidation of tris(2-chloroethyl) phosphate: intermediate products and residual toxicity, Chemosphere, 190 (2018) 225–233.
  42. J.S. Ye, J. Liu, C.S. Li, P.L. Zhou, S. Wu, H. Ou, Heterogeneous photocatalysis of tris(2-chloroethyl) phosphate by UV/TiO2: degradation products and impacts on bacterial proteome, Water Res., 124 (2017) 29–38.