References
- S.G. Ballesteros, M. Mora, R. Vicente, R.F. Vercher, C. Sabater,
M.A Castillo, A.M. Amat, A. Arques, A new methodology
to assess the performance of AOPs in complex samples:
application to the degradation of phenolic compounds by O3
and O3/UV-A-Vis, Chemosphere, 222 (2019) 114–123.
- D.B. Silva, C.A. Alcalde, C. Sans, J. Giménez, S. Esplugas,
Performance and kinetic modeling of photolytic and
photocatalytic ozonation for enhanced micropollutants removal
in municipal wastewaters, Appl. Catal., B, 249 (2019) 211–217.
- M. Farzadkia, D.Y. Shahamat, S. Nasseri, A.H. Mahvi,
M. Gholami, A. Shahryari, Catalytic ozonation of phenolic
wastewater: identification and toxicity of intermediates,
J. Eng., 2014 (2014) 1–10.
- D.A. Piña, G.R. Morales, C.B. Díaz, P.B. Hernandez,
E.M. Campo, R. Natividad, Synergic effect of ozonation and
electrochemical methods on oxidation and toxicity reduction:
phenol degradation, Fuel, 198 (2017) 82–90.
- Y. Xie, Y. Chen, J. Yang, C. Liu, H. Zhao, H. Cao, Distinct
synergetic effects in the ozone enhanced photocatalytic
degradation of phenol and oxalic acid with Fe3+/TiO2 catalyst,
Chin. J. Chem. Eng., 26 (2018) 1528–1535.
- M. Mehrjouei, S. Müller, D. Möller, A review on photocatalytic
ozonation used for the treatment of water and wastewater,
Chem. Eng. J., 263 (2015) 209–219.
- K. Turhan, S. Uzman, Removal of phenol from water using
ozone, Desalination, 229 (2008) 257–263.
- S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian,
A. Najafi, E. Mofarrah, Phenol removal from industrial wastewaters:
a short review, Desal. Water Treat., 53 (2014) 2215–2234.
- L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee,
K.E. Taylor, N. Biswas, A short review of techniques for
phenol removal from wastewater, Curr. Pollut. Rep., 2 (2016)
157–167.
- T. Ali, P. Tripathi, A. Azam, W. Raza, A.S. Ahmed, A. Ahmed,
M. Muneer, Photocatalytic performance of Fe-doped TiO2
nanoparticles under visible-light irradiation, Mater. Res.
Express, 4 (2017) 015022, doi: 10.1088/2053-1591/aa576d.
- M.V. Swapna, K.R. Haridas, An easier method of preparation
of mesoporous anatase TiO2 nanoparticles via ultrasonic
irradiation, J. Exp. Nanosci., 11 (2016) 540–549.
- M.M. Viana, V.F. Soares, N.D.S. Mohallem, Synthesis and
characterization of TiO2 nanoparticles, Ceram. Int., 36 (2010)
2047–2053.
- S. Bhattacharjee, S. Chakraborty, K. Mandol, L. Liu, H. Choi,
C. Bhattacharjee, Optimization of process parameters during
photocatalytic degradation of phenol in UV annular reactor,
Desal. Water Treat., 54 (2015) 2270–2279.
- A.C. Mecha, M.S. Onyango, A. Ochieng, T.S. Jamil, C.J.S. Fourie,
M.N.B. Momba, UV and solar light photocatalytic removal
of organic contaminants in municipal wastewater, Sep. Sci.
Technol., 51 (2016) 1765–1778.
- K. Salehi, B. Shahmoradi, A. Bahmani, M. Pirsaheb,
H.P. Shivaraju, Optimization of reactive Black 5 degradation
using hydrothermally synthesized NiO/TiO2 nanocomposite
under natural sunlight irradiation, Desal. Water Treat.,
57 (2016) 25256–25266.
- S. Amirkhanloun, M. Ketabchi, N. Parvin, Nanocrystalline/nanoparticles ZnO synthesized by high energy ball milling
process, Mater. Lett., 86 (2012) 122–124.
- S.B. Eadi, S. Kim, S.W. Jeong, H.W. Jeon, Novel preparation
of Fe doped TiO2 nanoparticles and their application for gas
sensor and photocatalytic degradation, Adv. Mater. Sci. Eng.,
2017 (2017) 1–6.
- M.B. Marami, M. Farahmandjou, B. Khoshnevisan, Sol–gel
synthesis of Fe-doped TiO2 nanocrystals, J. Electron. Mater.,
47 (2018) 3741–3748.
- I. Ganesh, P.K. Polkampally, A.K. Gupta, P.S.C. Sekhar,
K. Radha, G. Padmanabham, G. Sundararajan, Preparation
and characterization of Fe-doped TiO2 powders for solar
light response and photocatalytic applications, Process. Appl.
Ceram., 6 (2012) 21–36.
- A. Kerrami, L. Mahtout, F. Bensouici, M. Bououdina,
S. Rabhi, E. Sakher, H. Belkacemi, Synergistic effect of rutileanatase
Fe-doped TiO2 as efficient nanocatalyst for the
degradation of Azucryl Red, Mater. Res. Express, 6 (2019)
0850f5, doi: 10.1088/2053-1591/ab2677.
- S. Sood, A. Umarb, S.K. Mehta, S.K. Kansal, Highly effective
Fe-doped TiO2 nanoparticles photocatalysts for visiblelight
driven photocatalytic degradation of toxic organic
compounds, J. Colloid Interface Sci., 450 (2015) 213–223.
- C.L. Luu, Q.T. Nguyen, S.T. Ho, Synthesis and characterization
of Fe-doped TiO2 photocatalyst by the sol–gel method, Adv.
Nat. Sci. Nanosci. Nanotechnol., 1 (2010) 015008, doi: 10.1088/
2043-6254/1/1/015008.
- D.H. Quiñones, P.M. Álvarez, A. Rey, F.J. Beltrán, Removal of
emerging contaminants from municipal WWTP secondary
effluents by solar photocatalytic ozonation: a pilot-scale study,
Sep. Purif. Technol., 149 (2015) 132–139.
- A. Espejo, F.J. Beltrán, F.J. Rivas, J.F. García-Araya, O. Gimeno,
Iron based catalysts for photocatalytic ozonation of some
emerging pollutants of wastewater, J. Environ. Sci. Health Part
A, 50 (2015) 553–562.
- A.C. Mecha, M.S. Onyango, A. Ochieng, C.J.S. Fourie,
M.N.B. Momba, Synergistic effect of UV-vis and solar
photocatalytic ozonation on the degradation of phenol in
municipal wastewater: a comparative study, J. Catal., 341 (2016)
116–125.
- J. Xiao, Y. Xie, H. Cao, Organic pollutants removal in wastewater
by heterogeneous photocatalytic ozonation, Chemosphere,
121 (2015) 1–17.
- C. Mecha, M.S. Onyango, A. Ochieng, M.N.B. Momba,
Evaluation of synergy and bacterial re-growth in photocatalytic
ozonation disinfection of municipal wastewater, Sci. Total
Environ., 601–602 (2017) 626–635.
- A.C. Mecha, M.S. Onyango, A. Ochieng, M.N.B. Momba,
Ultraviolet and solar photocatalytic ozonation of municipal
wastewater: catalyst reuse, energy requirements and toxicity
assessment, Chemosphere, 186 (2017) 669–676.
- M. Ghorbanpour, A. Feizi, Iron-doped TiO2 catalysts with
photocatalytic activity, J. Water Environ. Nanotechnol.,
4 (2019) 60–66.
- M. Taghavi, M.T. Ghaneian, M.H. Ehrampoush, M. Tabatabaee,
M. Afsharnia, A. Alami, J. Mardaneh, Feasibility of applying
the LED-UV-induced TiO2/ZnO-supported H3PMo12O40
nanoparticles in photocatalytic degradation of aniline, Environ.
Monit. Assess., 190 (2018) 188, doi: 10.1007/s10661-018-6565-y.
- N. Marchitan, C. Cojocaru, A. Mercuta, G. Gupta, I. Cretescu,
M. Gonta, Modeling and optimization of tartaric acid reactive
extraction from aqueous solution: a comparison between
response surface methodology and artificial neural network,
Sep. Purif. Technol., 75 (2010) 273–285.
- F. Geyikei, E. Kilic, S. Coruh, S. Elevli, Modeling of lead
adsorption from industrial sludge leachate on the red mud by
using RSM and ANN, Chem. Eng. J., 183 (2012) 53–59.
- J. Hoigné, H. Bader, Rate constants of reactions of ozone with
organic and inorganic compounds in water-II. Dissociating
organic compounds, Water Res., 17 (1983) 185–194.
- C.V. Rekhate, J.K. Srivastava, Recent advances in ozone-based
advanced oxidation processes for treatment of wastewater
- a review, Chem. Eng. J. Adv., 3 (2020) 100031, doi: 10.1016/j.
ceja.2020.100031.
- A.C. Mecha, M.S. Onyango, A. Ochieng, M.N.B. Momba,
Impact of ozonation in removing organic micro-pollutants in
primary and secondary municipal wastewater: effect of process
parameters, Water Sci. Technol., 74 (2016) 756–765.
- Z. Zeng, H. Zou, X. Li, M. Arowo, B. Sun, J. Chen, G. Chu,
L. Shao, Degradation of phenol by ozone in the presence
of Fenton reagent in a rotating packed bed, Chem. Eng. J.,
229 (2013) 404–411.
- M.M. Rodríguez, G. Márquez, E.A. León, P.M. Álvarez,
A.M. Amat, F.J. Beltrán, Mechanism considerations for
photocatalytic oxidation, ozonation and photocatalytic
ozonation of some pharmaceutical compounds in water,
J. Environ. Manage., 127 (2013) 114–124.
- T. Poznyak, J. Vivero, Degradation of aqueous phenol and
chlorinated phenols by ozone, Ozone Sci. Eng., 27 (2005)
447–458.
- L.L.C. Catorceno, K.R.B. Nogueira, A.C.S.C. Teixeira, Treatment
of aqueous effluents containing phenol by the O3, O3-UV,
and O3-H2O2 processes: experimental study and neural
network modeling, Sep. Sci. Technol., 45 (2010) 1521–1528.
- W. Cheng, X. Quan, R. Li, J. Wu, Q. Zhao, Ozonation of phenolcontaining
wastewater using O3/Ca(OH)2 system in a micro
bubble gas-liquid reactor, Ozone Sci. Eng., 40 (2017) 173–182.
- W. Pratarn, T. Pornsiri, S. Thanit, C. Tawatchai, T. Wiwut,
Adsorption and ozonation kinetic model for phenolic
wastewater treatment: catalysis, kinetics and reactors, Chin. J.
Chem. Eng., 19 (2011) 76–82.
- K. Muroyama, S. Suwa, A. Kawabata, Y. Takami, J. Hayashi,
Effects of addition of hydrogen peroxide and/or calcium
carbonate on ozone-decomposition of phenol sparingly
dissolved in water, Ozone Sci. Eng., 33 (2011) 143–149.
- M.K. Ramseier, U. Gunten, Mechanisms of phenol ozonation—
kinetics of formation of primary and secondary reaction
products, Ozone Sci. Eng., 31 (2009) 201–215.
- Environmental Standards for Ambient Air, Automobiles,
Fuel, Industries and Noise, Central Pollution Control Board,
India. Available at: http://www.cpcbenvis.nic.in/
- S. Nahar, K. Hasegawa, S. Kagaya, Photocatalytic degradation
of phenol by visible light-responsive iron-doped TiO2 and
spontaneous sedimentation of the TiO2 particles, Chemosphere,
65 (2006) 1976–1982.
- P.H. Nakhate, H.G. Patil, K.V. Marathe, Intensification of landfill
leachate treatment by advanced Fenton process using classical
and statistical approach, Chem. Eng. Process. Process Intensif.,
133 (2018) 148–159.