References

  1. S.G. Ballesteros, M. Mora, R. Vicente, R.F. Vercher, C. Sabater, M.A Castillo, A.M. Amat, A. Arques, A new methodology to assess the performance of AOPs in complex samples: application to the degradation of phenolic compounds by O3 and O3/UV-A-Vis, Chemosphere, 222 (2019) 114–123.
  2. D.B. Silva, C.A. Alcalde, C. Sans, J. Giménez, S. Esplugas, Performance and kinetic modeling of photolytic and photocatalytic ozonation for enhanced micropollutants removal in municipal wastewaters, Appl. Catal., B, 249 (2019) 211–217.
  3. M. Farzadkia, D.Y. Shahamat, S. Nasseri, A.H. Mahvi, M. Gholami, A. Shahryari, Catalytic ozonation of phenolic wastewater: identification and toxicity of intermediates, J. Eng., 2014 (2014) 1–10.
  4. D.A. Piña, G.R. Morales, C.B. Díaz, P.B. Hernandez, E.M. Campo, R. Natividad, Synergic effect of ozonation and electrochemical methods on oxidation and toxicity reduction: phenol degradation, Fuel, 198 (2017) 82–90.
  5. Y. Xie, Y. Chen, J. Yang, C. Liu, H. Zhao, H. Cao, Distinct synergetic effects in the ozone enhanced photocatalytic degradation of phenol and oxalic acid with Fe3+/TiO2 catalyst, Chin. J. Chem. Eng., 26 (2018) 1528–1535.
  6. M. Mehrjouei, S. Müller, D. Möller, A review on photocatalytic ozonation used for the treatment of water and wastewater, Chem. Eng. J., 263 (2015) 209–219.
  7. K. Turhan, S. Uzman, Removal of phenol from water using ozone, Desalination, 229 (2008) 257–263.
  8. S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian, A. Najafi, E. Mofarrah, Phenol removal from industrial wastewaters: a short review, Desal. Water Treat., 53 (2014) 2215–2234.
  9. L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, N. Biswas, A short review of techniques for phenol removal from wastewater, Curr. Pollut. Rep., 2 (2016) 157–167.
  10. T. Ali, P. Tripathi, A. Azam, W. Raza, A.S. Ahmed, A. Ahmed, M. Muneer, Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation, Mater. Res. Express, 4 (2017) 015022, doi: 10.1088/2053-1591/aa576d.
  11. M.V. Swapna, K.R. Haridas, An easier method of preparation of mesoporous anatase TiO2 nanoparticles via ultrasonic irradiation, J. Exp. Nanosci., 11 (2016) 540–549.
  12. M.M. Viana, V.F. Soares, N.D.S. Mohallem, Synthesis and characterization of TiO2 nanoparticles, Ceram. Int., 36 (2010) 2047–2053.
  13. S. Bhattacharjee, S. Chakraborty, K. Mandol, L. Liu, H. Choi, C. Bhattacharjee, Optimization of process parameters during photocatalytic degradation of phenol in UV annular reactor, Desal. Water Treat., 54 (2015) 2270–2279.
  14. A.C. Mecha, M.S. Onyango, A. Ochieng, T.S. Jamil, C.J.S. Fourie, M.N.B. Momba, UV and solar light photocatalytic removal of organic contaminants in municipal wastewater, Sep. Sci. Technol., 51 (2016) 1765–1778.
  15. K. Salehi, B. Shahmoradi, A. Bahmani, M. Pirsaheb, H.P. Shivaraju, Optimization of reactive Black 5 degradation using hydrothermally synthesized NiO/TiO2 nanocomposite under natural sunlight irradiation, Desal. Water Treat., 57 (2016) 25256–25266.
  16. S. Amirkhanloun, M. Ketabchi, N. Parvin, Nanocrystalline/nanoparticles ZnO synthesized by high energy ball milling process, Mater. Lett., 86 (2012) 122–124.
  17. S.B. Eadi, S. Kim, S.W. Jeong, H.W. Jeon, Novel preparation of Fe doped TiO2 nanoparticles and their application for gas sensor and photocatalytic degradation, Adv. Mater. Sci. Eng., 2017 (2017) 1–6.
  18. M.B. Marami, M. Farahmandjou, B. Khoshnevisan, Sol–gel synthesis of Fe-doped TiO2 nanocrystals, J. Electron. Mater., 47 (2018) 3741–3748.
  19. I. Ganesh, P.K. Polkampally, A.K. Gupta, P.S.C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications, Process. Appl. Ceram., 6 (2012) 21–36.
  20. A. Kerrami, L. Mahtout, F. Bensouici, M. Bououdina, S. Rabhi, E. Sakher, H. Belkacemi, Synergistic effect of rutileanatase Fe-doped TiO2 as efficient nanocatalyst for the degradation of Azucryl Red, Mater. Res. Express, 6 (2019) 0850f5, doi: 10.1088/2053-1591/ab2677.
  21. S. Sood, A. Umarb, S.K. Mehta, S.K. Kansal, Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visiblelight driven photocatalytic degradation of toxic organic compounds, J. Colloid Interface Sci., 450 (2015) 213–223.
  22. C.L. Luu, Q.T. Nguyen, S.T. Ho, Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol–gel method, Adv. Nat. Sci. Nanosci. Nanotechnol., 1 (2010) 015008, doi: 10.1088/ 2043-6254/1/1/015008.
  23. D.H. Quiñones, P.M. Álvarez, A. Rey, F.J. Beltrán, Removal of emerging contaminants from municipal WWTP secondary effluents by solar photocatalytic ozonation: a pilot-scale study, Sep. Purif. Technol., 149 (2015) 132–139.
  24. A. Espejo, F.J. Beltrán, F.J. Rivas, J.F. García-Araya, O. Gimeno, Iron based catalysts for photocatalytic ozonation of some emerging pollutants of wastewater, J. Environ. Sci. Health Part A, 50 (2015) 553–562.
  25. A.C. Mecha, M.S. Onyango, A. Ochieng, C.J.S. Fourie, M.N.B. Momba, Synergistic effect of UV-vis and solar photocatalytic ozonation on the degradation of phenol in municipal wastewater: a comparative study, J. Catal., 341 (2016) 116–125.
  26. J. Xiao, Y. Xie, H. Cao, Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation, Chemosphere, 121 (2015) 1–17.
  27. C. Mecha, M.S. Onyango, A. Ochieng, M.N.B. Momba, Evaluation of synergy and bacterial re-growth in photocatalytic ozonation disinfection of municipal wastewater, Sci. Total Environ., 601–602 (2017) 626–635.
  28. A.C. Mecha, M.S. Onyango, A. Ochieng, M.N.B. Momba, Ultraviolet and solar photocatalytic ozonation of municipal wastewater: catalyst reuse, energy requirements and toxicity assessment, Chemosphere, 186 (2017) 669–676.
  29. M. Ghorbanpour, A. Feizi, Iron-doped TiO2 catalysts with photocatalytic activity, J. Water Environ. Nanotechnol., 4 (2019) 60–66.
  30. M. Taghavi, M.T. Ghaneian, M.H. Ehrampoush, M. Tabatabaee, M. Afsharnia, A. Alami, J. Mardaneh, Feasibility of applying the LED-UV-induced TiO2/ZnO-supported H3PMo12O40 nanoparticles in photocatalytic degradation of aniline, Environ. Monit. Assess., 190 (2018) 188, doi: 10.1007/s10661-018-6565-y.
  31. N. Marchitan, C. Cojocaru, A. Mercuta, G. Gupta, I. Cretescu, M. Gonta, Modeling and optimization of tartaric acid reactive extraction from aqueous solution: a comparison between response surface methodology and artificial neural network, Sep. Purif. Technol., 75 (2010) 273–285.
  32. F. Geyikei, E. Kilic, S. Coruh, S. Elevli, Modeling of lead adsorption from industrial sludge leachate on the red mud by using RSM and ANN, Chem. Eng. J., 183 (2012) 53–59.
  33. J. Hoigné, H. Bader, Rate constants of reactions of ozone with organic and inorganic compounds in water-II. Dissociating organic compounds, Water Res., 17 (1983) 185–194.
  34. C.V. Rekhate, J.K. Srivastava, Recent advances in ozone-based advanced oxidation processes for treatment of wastewater - a review, Chem. Eng. J. Adv., 3 (2020) 100031, doi: 10.1016/j. ceja.2020.100031.
  35. A.C. Mecha, M.S. Onyango, A. Ochieng, M.N.B. Momba, Impact of ozonation in removing organic micro-pollutants in primary and secondary municipal wastewater: effect of process parameters, Water Sci. Technol., 74 (2016) 756–765.
  36. Z. Zeng, H. Zou, X. Li, M. Arowo, B. Sun, J. Chen, G. Chu, L. Shao, Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed, Chem. Eng. J., 229 (2013) 404–411.
  37. M.M. Rodríguez, G. Márquez, E.A. León, P.M. Álvarez, A.M. Amat, F.J. Beltrán, Mechanism considerations for photocatalytic oxidation, ozonation and photocatalytic ozonation of some pharmaceutical compounds in water, J. Environ. Manage., 127 (2013) 114–124.
  38. T. Poznyak, J. Vivero, Degradation of aqueous phenol and chlorinated phenols by ozone, Ozone Sci. Eng., 27 (2005) 447–458.
  39. L.L.C. Catorceno, K.R.B. Nogueira, A.C.S.C. Teixeira, Treatment of aqueous effluents containing phenol by the O3, O3-UV, and O3-H2O2 processes: experimental study and neural network modeling, Sep. Sci. Technol., 45 (2010) 1521–1528.
  40. W. Cheng, X. Quan, R. Li, J. Wu, Q. Zhao, Ozonation of phenolcontaining wastewater using O3/Ca(OH)2 system in a micro bubble gas-liquid reactor, Ozone Sci. Eng., 40 (2017) 173–182.
  41. W. Pratarn, T. Pornsiri, S. Thanit, C. Tawatchai, T. Wiwut, Adsorption and ozonation kinetic model for phenolic wastewater treatment: catalysis, kinetics and reactors, Chin. J. Chem. Eng., 19 (2011) 76–82.
  42. K. Muroyama, S. Suwa, A. Kawabata, Y. Takami, J. Hayashi, Effects of addition of hydrogen peroxide and/or calcium carbonate on ozone-decomposition of phenol sparingly dissolved in water, Ozone Sci. Eng., 33 (2011) 143–149.
  43. M.K. Ramseier, U. Gunten, Mechanisms of phenol ozonation— kinetics of formation of primary and secondary reaction products, Ozone Sci. Eng., 31 (2009) 201–215.
  44. Environmental Standards for Ambient Air, Automobiles, Fuel, Industries and Noise, Central Pollution Control Board, India. Available at: http://www.cpcbenvis.nic.in/
  45. S. Nahar, K. Hasegawa, S. Kagaya, Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles, Chemosphere, 65 (2006) 1976–1982.
  46. P.H. Nakhate, H.G. Patil, K.V. Marathe, Intensification of landfill leachate treatment by advanced Fenton process using classical and statistical approach, Chem. Eng. Process. Process Intensif., 133 (2018) 148–159.