References

  1. F.L. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  2. D.A. Glatstein, F.M. Francisca, Influence of pH and ionic strength on Cd, Cu and Pb removal from water by adsorption in Na-bentonite, Appl. Clay Sci., 118 (2015) 61–67.
  3. S. Hokkanen, A. Bhatnagar, M. Sillanpaa, A review on modification methods to cellulose-based adsorbents to improve adsorption capacity, Water Res., 91 (2016) 156–173.
  4. J. Liang, X.M. Li, Z.G. Yu, G.M. Zeng, Y. Luo, L.B. Jiang, Z.X. Yang, Y.Y. Qian, H.P. Wu, Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb(II) and Cd(II), ACS Sustainable Chem. Eng., 5 (2017) 5049–5058.
  5. M.F. Zhu, L. Zhu, J.L. Wang, T.L. Yue, R.H. Li, Z.H. Li, Adsorption of Cd(II) and Pb(II) by in situ oxidized Fe3O4 membrane grafted on 316L porous stainless steel filter tube and its potential application for drinking water treatment, J. Environ. Manage., 196 (2017) 127–136.
  6. M.J. Amiri, R. Roohi, A. Gil, Numerical simulation of Cd(II) removal by ostrich bone ash supported nanoscale zero-valent iron in a fixed-bed column system: utilization of unsteady advection-dispersion-adsorption equation, J. Water Process Eng., 25 (2018) 1–14.
  7. Z.B. Shang, L.W. Zhang, X.Y. Zhao, S.H. Liu, D.L. Li, Removal of Pb(II), Cd(II) and Hg(II) from aqueous solution by mercaptomodified coal gangue, J. Environ. Manage., 231 (2019) 391–396.
  8. Y.D. Zou, X.X. Wang, A. Khan, P.Y. Wang, Y.H. Liu, A. Alsaedi, T. Hayat, X.K. Wang, Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review, Environ. Sci. Technol., 50 (2016) 7290–7304.
  9. A. Habineza, J. Zhai, T. Ntakirutimana, F.P. Qiu, X.T. Li, Q.F. Wang, Heavy metal removal from wastewaters by agricultural waste low-cost adsorbents: hindrances of adsorption technology to the large scale industrial application-a review, Desal. Water Treat., 78 (2017) 192–214.
  10. Y.H. Li, F.Q. Liu, B. Xia, Q.J. Du, P. Zhang, D.C. Wang, Z.H. Wang, Y.Z. Xia, Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites, J. Hazard. Mater., 177 (2010) 876–880.
  11. M.W. Yap, N.M. Mubarak, J.N. Sahu, E.C. Abdullah, Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater, J. Ind. Eng. Chem., 45 (2017) 287–295.
  12. A.K. Thakur, G.M. Nisola, L.A. Limjuco, K.J. Parohinog, R.E.C. Torrejos, V.K. Shahi, W.J. Chung, Polyethyleniminemodified mesoporous silica adsorbent for simultaneous removal of Cd(II) and Ni(II) from aqueous solution, J. Ind. Eng. Chem., 49 (2017) 133–144.
  13. M.C. Tonucci, L.V.A. Gurgel, S.F. de Aquino, Activated carbons from agricultural byproducts (pine tree and coconut shell), coal, and carbon nanotubes as adsorbents for removal of sulfamethoxazole from spiked aqueous solutions: kinetic and thermodynamic studies, Ind. Crop Prod., 74 (2015) 111–121.
  14. L.B.L. Lim, N. Priyantha, D.T.B. Tennakoon, M.K. Dahri, Biosorption of cadmium(II) and copper(II) ions from aqueous solution by core of Artocarpus odoratissimus, Environ. Sci. Pollut. Res., 19 (2012) 3250–3256.
  15. W.J. Yin, C.C. Zhao, J.T. Xu, J. Zhang, Z.Z. Guo, Y.H. Shao, Removal of Cd(II) and Ni(II) from aqueous solutions using activated carbon developed from powder-hydrolyzed-feathers and Trapa natans husks, Colloid Surf., A, 560 (2019) 426–433.
  16. A. Baruah, S. Mondal, L. Sahoo, U.K. Gautam, Ni–Fe-layered double hydroxide/N-doped graphene oxide nanocomposite for the highly efficient removal of Pb(II) and Cd(II) ions from water, J. Solid State Chem., 280 (2019) 164–170.
  17. Z.H. Yang, X.H. Chen, S.Y. Li, W.H. Ma, Y. Li, Z.D. He, H.R. Hu, T. Wang, Effective removal of Cd(II) from aqueous solution based on multifunctional nanoporous silicon derived from solar kerf loss waste, J. Hazard. Mater., 385 (2020), doi: 10.1016/j.jhazmat.2019.121522.
  18. T.A.H. Nguyen, H.H. Ngo, W.S. Guo, J. Zhang, S. Liang, Q.Y. Yue, Q. Li, T.V. Nguyen, Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater, Bioresour. Technol., 148 (2013) 574–585.
  19. W.J. Liu, L.L. Ling, Y.Y. Wang, H. He, Y.R. He, H.Q. Yu, H. Jiang, One-pot high yield synthesis of Ag nanoparticleembedded biochar hybrid materials from waste biomass for catalytic Cr(VI) reduction, Environ. Sci. Nano, 3 (2016) 745–753.
  20. T.T. Luo, X.K. Tian, C. Yang, W.J. Luo, Y.L. Nie, Y.X. Wang, Polyethylenimine-functionalized corn bract, an agricultural waste material, for efficient removal and recovery of Cr(VI) from aqueous solution, J. Agric. Food Chem., 65 (2017) 7153–7158.
  21. C.R. Nie, X. Yang, N.K. Niazi, X.Y. Xu, Y.H. Wen, J. Rinklebe, Y.S. Ok, S. Xu, H.L. Wang, Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: a field study, Chemosphere, 200 (2018) 274–282.
  22. A.K. Varma, P. Mondal, Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products, Ind. Crop Prod., 95 (2017) 704–717.
  23. Y. Li, L.Y. Hu, B.L. Shen, C.L. Dai, Q.J. Xu, D.Y. Liu, J. Jiang, Y. Li, M.W. Xu, Rib-like hierarchical porous carbon as reservoir for long-life and high-rate Li-Te batteries, Electrochim. Acta, 250 (2017) 10–15.
  24. H.C. Tao, H.R. Zhang, J.B. Li, W.Y. Ding, Biomass based activated carbon obtained from sludge and sugarcane bagasse for removing lead ion from wastewater, Bioresour. Technol., 192 (2015) 611–617.
  25. C.A. Rezende, M.A. de Lima, P. Maziero, E.R. de Azevedo, W. Garcia, I. Polikarpov, Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility, Biotechnol. Biofuels, 4 (2011) 1–18.
  26. N. Rattanachueskul, A. Saning, S. Kaowphong, N. Chumha, L. Chuenchom, Magnetic carbon composites with a hierarchical structure for adsorption of tetracycline, prepared from sugarcane bagasse via hydrothermal carbonization coupled with simple heat treatment process, Bioresour. Technol., 226 (2017) 164–172.
  27. Y. Liu, Q. Gao, S. Pu, H.Q. Wang, K.S. Xia, B. Han, C.G. Zhou, Carboxyl-functionalized lotus seedpod: a highly efficient and reusable agricultural waste-based adsorbent for removal of toxic Pb2+ ions from aqueous solution, Colloid Surf., A, 568 (2019) 391–401.
  28. M.J. Alves, I.V. Cavalcanti, M.M. de Resende, V.L. Cardoso, M.H. Reis, Biodiesel dry purification with sugarcane bagasse, Ind. Crop Prod., 89 (2016) 119–127.
  29. K. Pyrzynska, M. Trojanowicz, Functionalized cellulose sorbents for preconcentration of trace metals in environmental analysis, Crit. Rev. Anal. Chem., 29 (1999) 313–321.
  30. C.Q. Wang, H. Wang, Carboxyl functionalized Cinnamomum camphora for removal of heavy metals from synthetic wastewater-contribution to sustainability in agroforestry, J. Cleaner Prod., 184 (2018) 921–928.
  31. M.V. Subbaiah, D.S. Kim, Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: kinetics, isotherms, and thermodynamic studies, Ecotoxicol. Environ. Saf., 128 (2016) 109–117.
  32. A. Hashem, S.M. Badawy, S. Farag, L.A. Mohamed, A.J. Fletcher, G.M. Taha, Non-linear adsorption characteristics of modified pine wood sawdust optimised for adsorption of Cd(II) from aqueous systems, J. Environ. Chem. Eng., 8 (2020), doi: 10.1016/j.jece.2020.103966.
  33. V. Pushpamalar, S.J. Langford, M. Ahmad, Y.Y. Lim, Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste, Carbohydr. Polym., 64 (2006) 312–318.
  34. J.B. Pang, F.L. Fu, Z.C. Ding, J.W. Lu, N. Li, B. Tang, Adsorption behaviors of methylene blue from aqueous solution on mesoporous birnessite, J. Taiwan Inst. Chem. Eng., 77 (2017) 168–176.
  35. X. Xie, H. Gao, X. Luo, T. Su, Y. Zhang, Z. Qin, Polyethyleneimine modified activated carbon for adsorption of Cd(II) in aqueous solution, J. Environ. Chem. Eng., 7 (2019), doi: 10.1016/j. jece.2019.103183.
  36. E.A. Ali, S.S. Elkholy, R.E. Morsi, M.Z. Elsabee, Studies on adsorption behavior of Cu(II) and Cd(II) onto aminothiophene derivatives of Styrene Maleic anhydride copolymer, J. Taiwan Inst. Chem. Eng., 64 (2016) 325–335.
  37. S. Yang, M.X. Hua, L. Shen, X.L. Han, M.Y. Xu, L.J. Kuang, D.B. Hua, Phosphonate and carboxylic acid co-functionalized MoS2 sheets for efficient sorption of uranium and europium: multiple groups for broad-spectrum adsorption, J. Hazard. Mater., 354 (2018) 191–197.
  38. J.K. Bediako, W. Wei, S. Kim, Y.S. Yun, Removal of heavy metals from aqueous phases using chemically modified waste Lyocell fiber, J. Hazard. Mater., 299 (2015) 550–561.
  39. J.H. Wen, Y. Yin, X.F. Peng, S.D. Zhang, Using H2O2 to selectively oxidize recyclable cellulose yarn with high carboxyl content, Cellulose, 26 (2019) 2699–2713.
  40. J.K. Bediako, W. Wei, Y.S. Yun, Low-cost renewable adsorbent developed from waste textile fabric and its application to heavy metal adsorption, J. Taiwan Inst. Chem. Eng., 63 (2016) 250–258.
  41. M. Arshadi, F. Mousavinia, M.J. Amiri, A.R. Faraji, Adsorption of methyl orange and salicylic acid on a nano-transition metal composite: kinetics, thermodynamic and electrochemical studies, J. Colloid Interface Sci., 483 (2016) 118–131.
  42. M.F. Zou, X.Y. Chen, X.J. Lin, M.Y. Chen, N.N. Ding, L.Y. Yang, X.K. Ouyang, Fabrication of magnetic carboxyl-functionalized attapulgite/calcium alginate beads for lead ion removal from aqueous solutions, Int. J. Biol. Macromol., 120 (2018) 789–800.
  43. X.J. Li, C.J. Yan, W.J. Luo, Q. Gao, Q. Zhou, C. Liu, S. Zhou, Exceptional cerium(III) adsorption performance of poly (acrylic acid) brushes-decorated attapulgite with abundant and highly accessible binding sites, Chem. Eng. J., 284 (2016) 333–342.
  44. S. Wong, H.H. Tumari, N. Ngadi, N.B. Mohamed, O. Hassan, R. Mat, N.A.S. Amin, Adsorption of anionic dyes on spent tea leaves modified with polyethyleneimine (PEI-STL), J. Cleaner Prod., 206 (2019) 394–406.
  45. Y.Y. Su, Y.B. Jiao, C.C. Dou, R.P. Han, Biosorption of methyl orange from aqueous solutions using cationic surfactantmodified wheat straw in batch mode, Desal. Water Treat., 52 (2014) 6145–6155.
  46. R. Lavanya, T. Gomathi, K. Vijayalakshmi, M. Saranya, P.N. Sudha, S. Anil, Adsorptive removal of copper(II) and lead(II) using chitosan-g-maleic anhydride-g-methacrylic acid copolymer, Int. J. Biol. Macromol., 104 (2017) 1495–1508.
  47. C.F. Tang, Y. Shu, R.Q. Zhang, X. Li, J.F. Song, B. Li, Y.T. Zhang, D.L. Ou, Comparison of the removal and adsorption mechanisms of cadmium and lead from aqueous solution by activated carbons prepared from Typha angustifolia and Salix matsudana, Rsc Adv., 7 (2017) 16092–16103.
  48. Y. Xu, Y.G. Liu, S.B. Liu, X.F. Tan, G.M. Zeng, W. Zeng, Y. Ding, W.C. Cao, B.H. Zheng, Enhanced adsorption of methylene blue by citric acid modification of biochar derived from water hyacinth (Eichornia crassipes), Environ. Sci. Pollut. Res., 23 (2016) 23606–23618.
  49. L. Wang, J. Zhang, R. Zhao, C. Li, Y. Li, C.L. Zhang, Adsorption of basic dyes on activated carbon prepared from Polygonum orientale Linn: equilibrium, kinetic and thermodynamic studies, Desalination, 254 (2010) 68–74.
  50. B. Li, J. Guo, K. Lv, J. Fan, Adsorption of methylene blue and Cd(II) onto maleylated modified hydrochar from water, Environ. Pollut., 254 (2019), doi: 10.1016/j.envpol.2019. 113014.
  51. Y.B. Wang, Y. Xie, Y.K. Zhang, S.Y. Tang, C.C. Guo, J.S. Wu, R. Lau, Anionic and cationic dyes adsorption on porous poly-melamine-formaldehyde polymer, Chem. Eng. Res. Des., 114 (2016) 258–267.
  52. X.J. Li, Z.M. Wang, J.L. Ning, M.M. Gao, W.B. Jiang, Z.D. Zhou, G.Y. Li, Preparation and characterization of a novel polyethyleneimine cation-modified persimmon tannin bioadsorbent for anionic dye adsorption, J. Environ. Manage., 217 (2018) 305–314.
  53. Q. Gao, J.F. Xie, Y.T. Shao, C. Chen, B. Han, K.S. Xia, C.G. Zhou, Ultrafast and high-capacity adsorption of Gd(III) onto inorganic phosphorous acid modified mesoporous SBA-15, Chem. Eng. J., 313 (2017) 197–206.
  54. L.C. Zheng, Z. Dang, X.Y. Yi, H. Zhang, Equilibrium and kinetic studies of adsorption of Cd(II) from aqueous solution using modified corn stalk, J. Hazard. Mater., 176 (2010) 650–656.
  55. K.S. Rao, S. Anand, P. Venkateswarlu, Modeling the kinetics of Cd(II) adsorption on Syzygium cumini L leaf powder in a fixed bed mini column, J. Ind. Eng. Chem., 17 (2011) 174–181.
  56. S.S. Pillai, B. Deepa, E. Abraham, N. Girija, P. Geetha, L. Jacob, M. Koshy, Biosorption of Cd(II) from aqueous solution using xanthated nano banana cellulose: equilibrium and kinetic studies, Ecotoxicol. Environ. Saf., 98 (2013) 352–360.
  57. Z.H. Wang, D.K. Shen, F. Shen, C.F. Wu, S. Gu, Ginkgo biloba L. shells-based adsorbent for the removal of Cu2+ and Cd2+ from aqueous solution: kinetics, isotherm, thermodynamics and mechanisms, J. Mol. Liq., 241 (2017) 603–611.
  58. R. Borah, D. Kumari, A. Gogoi, S. Biswas, R. Goswami, J.H. Shim, N.A. Begum, M. Kumar, Efficacy and field applicability of Burmese grape leaf extract (BGLE) for cadmium removal: an implication of metal removal from natural water, Ecotoxicol. Environ. Saf., 147 (2018) 585–593.
  59. M.K. Luo, H. Lin, B. Li, Y.B. Dong, Y.H. He, L. Wang, A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water, Bioresour. Technol., 259 (2018) 312–318.
  60. Y.Y. Deng, S. Huang, D.A. Laird, X.G. Wang, Z.W. Meng, Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems, Chemosphere, 218 (2019) 308–318.
  61. S.Q. Memon, N. Memon, S.W. Shah, M.Y. Khuhawar, M.I. Bhanger, Sawdust—A green and economical sorbent for the removal of cadmium(II) ions, J. Hazard. Mater., 139 (2007) 116–121.
  62. U. Kumar, M. Bandyopadhyay, Sorption of cadmium from aqueous solution using pretreated rice husk, Bioresour. Technol., 97 (2006) 104–109.
  63. R. Leyva-Ramos, L.A. Bernal-Jacome, I. Acosta-Rodriguez, Adsorption of cadmium(II) from aqueous solution on natural and oxidized corncob, Sep. Purif. Technol., 45 (2005) 41–49.
  64. M.Y. Abdelnaeim, I.Y. El Sherif, A.A. Attia, N.A. Fathy, M.F. El-Shahat, Impact of chemical activation on the adsorption performance of common reed towards Cu(II) and Cd(II), Int. J. Miner. Process., 157 (2016) 80–88.
  65. F. Mashkoor, A. Nasar, Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of malachite green from aqueous solution, J. Mol. Liq., 274 (2019) 315–327.
  66. X.C. Jin, Z.Y. Xiang, Q.G. Liu, Y. Chen, F.C. Lu, Polyethyleneiminebacterial cellulose bioadsorbent for effective removal of copper and lead ions from aqueous solution, Bioresour. Technol., 244 (2017) 844–849.
  67. Q. Gao, H. Zhu, W.J. Luo, S. Wang, C.G. Zhou, Preparation, characterization, and adsorption evaluation of chitosanfunctionalized mesoporous composites, Microporous Mesoporous Mater., 193 (2014) 15–26.
  68. Y.S. Ho, G. McKay, The kinetics of sorption of divalent metal ions onto sphagnum moss peat, Water Res., 34 (2000) 735–742.
  69. A. Roy, B. Adhikari, S.B. Majumder, Equilibrium, kinetic, and thermodynamic studies of azo dye adsorption from aqueous solution by chemically modified lignocellulosic jute fiber, Ind. Eng. Chem. Res., 52 (2013) 6502–6512.
  70. J.X. Yang, G.B. Hong, Adsorption behavior of modified Glossogyne tenuifolia leaves as a potential biosorbent for the removal of dyes, J. Mol. Liq., 252 (2018) 289–295.
  71. Y. Tian, X.F. Wang, Y.F. Pan, Simple synthesis of Ni-containing ordered mesoporous carbons and their adsorption/desorption of methylene orange, J. Hazard. Mater., 213 (2012) 361–368.
  72. D.C.R. Espinosa, J.A.S. Tenório, Fundamental aspects of recycling of nickel–cadmium batteries through vacuum distillation, J. Power Sources, 135 (2004) 320–326.
  73. D.C.R. Espinosa, J.A.S. Tenório, Recycling of nickel–cadmium batteries using coal as reducing agent, J. Power Sources, 157 (2006) 600–604.
  74. M. Assefi, S. Maroufi, Y. Yamauchi, V. Sahajwalla, Pyrometallurgical recycling of Li-ion, Ni–Cd and Ni–MH batteries: a minireview, Curr. Opin. Green Sustainable Chem., 24 (2020) 26–31.
  75. A.H. Nordin, S. Wong, N. Ngadi, M. Mohammad Zainol, N.A.F. Abd Latif, W. Nabgan, Surface functionalization of cellulose with polyethyleneimine and magnetic nanoparticles for efficient removal of anionic dye in wastewater, J. Environ. Chem. Eng., 9 (2021), doi: 10.1016/j.jece.2020.104639.
  76. G.P. Mashile, K.M. Dimpe, P.N. Nomngongo, A biodegradable magnetic nanocomposite as a superabsorbent for the simultaneous removal of selected fluoroquinolones from environmental water matrices: isotherm, kinetics, thermodynamic studies and cost analysis, Polymers, 12 (2020), doi: 10.3390/polym12051102.
  77. M.E. Argun, S. Dursun, M. Karatas, Removal of Cd(II), Pb(II), Cu(II) and Ni(II) from water using modified pine bark, Desalination, 249 (2009) 519–527.
  78. T.A. Saleh, V.K. Gupta, Processing methods, characteristics and adsorption behavior of tire derived carbons: a review, Adv. Colloid Interface Sci., 211 (2014) 93–101.
  79. Z.L. Du, T. Zheng, P. Wang, L.L. Hao, Y.X. Wang, Fast microwave-assisted preparation of a low-cost and recyclable carboxyl modified lignocellulose-biomass jute fiber for enhanced heavy metal removal from water, Bioresour. Technol., 201 (2016) 41–49.
  80. V.V. Kulkarni, A.K. Golder, P.K. Ghosh, Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation, J. Hazard. Mater., 341 (2018) 207–217.