References
- S.-Y. Tang, Y.-R. Qiu, Selective separation and recovery of
heavy metals from electroplating effluent using shear-induced
dissociation coupling with ultrafiltration, Chemosphere,
236 (2019) 124330, 10.1016/j.chemosphere.2019.07.061.
- L.Y. Lee, N. Morad, N. Ismail, M. Rafatullah, Opportunities
and challenges in supported liquid membrane technology for
heavy metal extraction and recovery: a review, Int. J. Environ.
Eng., 9 (2018) 324–354.
- L. Fang, L. Li, Z. Qu, H.M. Xu, J.F. Xu, N.Q. Yan, A novel method
for the sequential removal and separation of multiple heavy
metals from wastewater, J. Hazard. Mater., 342 (2018) 617–624.
- K. Ali, R. Nawaz, N. Ali, A. Khaliq, R. Ullah, Selective removal of
zinc using tri-ethanolamine-based supported liquid membrane,
Desal. Water Treat., 57 (2016) 8549–8560.
- A. Kaya, T. Kutlu, A. Hol, A. Surucu, H.K. Alpoguz, Transport
of Pb(II) by supported liquid membrane containing p-tert-butyl
calix
- amine derivative as carrier, Desal. Water Treat., 52 (2014)
3219–3225.
- M. Amini, A. Rahbar-Kelishami, M. Alipour, O. Vahidi,
Supported liquid membrane in metal ion separation: an
overview, J. Membr. Sci. Res., 4 (2018) 121–135.
- D. Sribudda, N. Sunsandee, P. Ramakul, U. Pancharoen,
S. Phatanasri, Separation of Cd(II) from industrial wastewater
via HFSLM: equilibrium, kinetic and thermodynamic
investigation, J. Ind. Eng. Chem., 25 (2015) 22–28.
- G. Zhang, D.S. Chen, W. Zhao, H.X. Zhao, L. Wang, W.J. Wang,
T. Qi, A novel D2EHPA-based synergistic extraction system
for the recovery of chromium(III), Chem. Eng. J., 302 (2016)
233–238.
- P. Amani, J. Asadi, E. Mohammadi, S. Akhgar, M. Esmaili,
Cooperative influence of D2EHPA and TBP on the reactive
extraction of cobalt from sulfuric acid leach solution in a
horizontal semi-industrial column, J. Environ. Chem. Eng.,
5 (2017) 4716–4727.
- A. Ghosh, D. Datta, H. Uslu, H.S. Bamufleh, S. Kumar,
Separation of copper ion (Cu2+) from aqueous solution using
tri-n-butyl phosphate and di-2-ethylhexyl phosphoric acid as
extractants, J. Mol. Liq., 258 (2018) 147–154.
- D.K. Singh, K.K. Yadav, H. Singh, Extraction and stripping
behavior of iron(III) from phosphoric acid medium by D2EHPA
alone and its mixtures with TBP/TOPO, Sep. Sci. Technol.,
48 (2013) 1556–1564.
- A. Azizitorghabeh, F. Rashchi, A. Babakhani, Stoichiometry
and structural studies of Fe(III) and Zn(II) solvent extraction
using D2EHPA/TBP, Sep. Purif. Technol., 171 (2016) 197–205.
- L.Y. Lee, N. Morad, N. Ismail, M. Rafatullah, Synergistic
extraction of Cd, Cu and Ni with D2EHPA/TBP: screening of
factors by fractional factorial design, Int. J. Chem. Eng. Appl.,
10 (2019) 114–120.
- J. Gega, P. Otrembska, Separation of Ni(II) and Cd(II) ions with
supported liquid membranes (SLM) using D2EHPA as a carrier,
Sep. Sci. Technol., 49 (2014) 1756–1760.
- S.H. Chang, T.T. Teng, N. Ismail, Efficiency, stoichiometry and
structural studies of Cu(II) removal from aqueous solutions
using di-2-ethylhexylphosphoric acid and tributylphosphate
diluted in soybean oil, Chem. Eng. J., 166 (2011) 249–255.
- T. Koonsang, K. Aunnankat, K. Maneeintr, U. Pancharoen,
T. Wongsawa, The mutual solubility of organic-liquid
membrane and aqueous phases at different water pH for the
stability of SLM using Aliquat 336 as an ionic-liquid extractant,
J. Mol. Liq., 292 (2019) 111363, doi: 10.1016/j.molliq.2019.111363.
- S. Altin, S. Alemdar, A. Altin, Y. Yildirim, Facilitated transport
of Cd(II) through a supported liquid membrane with Aliquat
336 as a carrier, Sep. Sci. Technol., 46 (2011) 754–764.
- N. Pont, V. Salvadó, C. Fontàs, Applicability of a supported
liquid membrane in the enrichment and determination of
cadmium from complex aqueous samples, Membranes, 8 (2018)
21, doi: 10.3390/membranes8020021.
- L.Y. Lee, N. Morad, N. Ismail, A. Talebi, M. Rafatullah,
Optimization for liquid-liquid extraction of Cd(II) over Cu(II)
ions from aqueous solutions using ionic liquid Aliquat 336 with
tributyl phosphate, Int. J. Mol. Sci., 21 (2020) 6860, doi: 10.3390/
ijms21186860.
- A.A. Nayl, Extraction and separation of Co(II) and Ni(II) from
acidic sulfate solutions using Aliquat 336, J. Hazard. Mater.,
173 (2010) 223–230.
- H.P. Duan, Z.Y. Wang, X.H. Yuan, S.X. Wang, H. Guo,
X.J. Yang, A novel sandwich supported liquid membrane
system for simultaneous separation of copper, nickel and cobalt
in ammoniacal solution, Sep. Purif. Technol., 173 (2017) 323–329.
- K.W. Böddeker, An Introduction to Barrier Separation, in:
Liquid Separations with Membranes: An Introduction to
Barrier Interference, Springer International Publishing, Cham,
2018, pp. 1–12.
- P. Dżygiel, P.P. Wieczorek, Chapter 3 – Supported Liquid
Membranes and Their Modifications: Definition, Classification,
Theory, Stability, Application and Perspectives, in: Liquid
Membranes, Elsevier, Amsterdam, 2010, pp. 73–140.
- A. Lee, J.W. Elam, S.B. Darling, Membrane materials for water
purification: design, development, and application, Environ.
Sci.: Water Res. Technol., 2 (2016) 17–42.
- A.M. Sastre, J. Szymanowski, Discussion of the physicochemical
effects of modifiers on the extraction properties of
hydroxyoximes. A review, Solvent Extr. Ion Exch., 22 (2004)
737–759.
- K.K. Bhatluri, M.S. Manna, P. Saha, A.K. Ghoshal, Supported
liquid membrane-based simultaneous separation of cadmium
and lead from wastewater, J. Membr. Sci., 459 (2014) 256–263.
- M.S. Manna, P. Saha, A.K. Ghoshal, Studies on the stability of
a supported liquid membrane and its cleaning protocol, RSC
Adv., 5 (2015) 71999–72008.
- E. Kır, Ş. Yalımlı, S. Kurtulmuş, A. Aydın, H. Yılmaz, Facilitated
transport of Ni(II) through supported liquid membranes
containing dithiophosphonates as ion carrier, Phosphorus,
Sulfur Silicon Relat. Elem., 190 (2015) 178–190.
- S.R. Pilli, T. Banerjee, K. Mohanty, Performance of different
ionic liquids to remove phenol from aqueous solutions using
supported liquid membrane, Desal. Water Treat., 54 (2014)
3062–3072.
- Z. Baicha, M.J. Salar-García, V.M. Ortiz-Martínez,
F.J. Hernández-Fernández, A.P. de los Ríos, D.P. Maqueda
Marín, J.A. Collado, F. Tomás-Alonso, M. El Mahi, On the
selective transport of nutrients through polymer inclusion
membranes based on ionic liquids, Processes, 7 (2019) 544, doi:
doi.org/10.3390/pr7080544.