References

  1. Y.H. Zhang, G.X. Cao, Z.B. Zhang, T. Marhaba, Study on removal and stabilization of heavy metals in contaminated sediment using modified clinoptilolite, Desal. Water Treat., 171 (2019) 132–143.
  2. I. Ounifi, C. Ursino, A. Hafiane, A. Figoli, E. Ferjani, Preparation of thin film composite membranes using interfacial polymerization for treatment of industrial water containing heavy metals, Desal. Water Treat., 170 (2019) 80–90.
  3. M. Monier, D.A. Abdel-Latif, Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions, J. Hazard. Mater., 209–210 (2012) 240–249.
  4. T. Sheela, Y.A. Nayaka, R. Viswanatha, S. Basavanna, T.G. Venkatesha, Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles, Powder Technol., 217 (2012) 163–170.
  5. Z.G. Zheng, H.Y. Zhao, X.H. Lin, J.B. Yang, R.H. Shi, Preparation of activated carbon from Camellia oleifera shell and its application to adsorption of hexavalent chromium from aqueous solution: kinetics, equilibrium, and thermodynamics, Desal. Water Treat., 198 (2020) 170–179.
  6. I.S. Bădescu, D. Bulgariu, I. Ahmad, L. Bulgariu, Valorisation possibilities of exhausted biosorbents loaded with metal ions – a review, J. Environ. Manage., 224 (2018) 288–297.
  7. A.I.A. Sherlala, A.A.A. Raman, M.M. Bello, A. Asghar, A review of the applications of organo-functionalized magnetic graphene oxide nano composites for heavy metal adsorption, Chemosphere, 193 (2019) 1004–1017.
  8. R.K. Misra, S.K. Jain, P.K. Khatri, Iminodiacetic acid functionalized cation exchange resin for adsorption removal of Cr(VI), Cd(II), Ni(II) and Pb(II) from their aqueous solution, J. Hazard. Mater., 185 (2011) 1508–1512.
  9. C.M. Xiong, W. Wang, F.T. Tan, F. Luo, J.G. Chen, X.L. Qiao, Investigation on the efficiency and mechanism of Cd(II) and Pb(II) removal from aqueous solution using MgO nanoparticles, J. Hazard. Mater., 299 (2015) 664–674.
  10. E. Rott, M. Nouri, C. Meyer, R. Minke, M. Schneider, K. Mandel, A. Drenkova-Tuhtan, Removal of phosphonates from synthetic and industrial wastewater with reusable magnetic adsorbent particles, Water Res., 145 (2018) 608–617.
  11. Q. Du, S.S. Zhang, J.P. Song, Y. Zhao, F. Yang, Activation of porous magnetized biochar by artificial humic acid for effective removal of lead ions, J. Hazard. Mater., 389 (2020), doi: 10.1016/j. jhazmat.2020.122115.
  12. C.H. Cao, L. Xiao, C.H. Chen, X.W. Shi, Q.H. Cao, L. Gao, In situ preparation of magnetic Fe3O4/chitosan nanoparticles via a novel reduction-precipitation method and their application in adsorption of reactive azo dye, Powder Technol., 260 (2014) 90–97.
  13. Z.M. Qiang, X.L. Bao, W.W. Ben, MCM-48 modified magnetic mesoporous nanocomposite as an attractive adsorbent for the removal of sulfamethazine from water, Water Res., 47 (2013) 4107–4114.
  14. S. Naeimi, H. Faghihian, Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanofreeate for removal of Cs+ from aqueous solution, Sep. Purif. Technol., 175 (2017) 255–265.
  15. F.S.A. Khan, N.M. Mubarak, M. Khalid, R. Walvekar, E.C. Abdullah, S.A. Mazari, S. Nizamuddin, R.R. Karri, Magnetic nanoadsorbents’ potential route for heavy metals removal— a review, Environ. Sci. Pollut. Res., 27 (2020) 24342–24356.
  16. P.G. Jamkhande, N.W. Ghule, A.H. Bamer, M.G. Kalaskar, Metal nanoparticles synthesis: an overview on the methods of preparation, advantages and disadvantages, and applications, J. Drug Delivery Sci. Technol., 53 (2019), doi: 10.1016/j. jddst.2019.101174.
  17. H.Y. Fu, H.F. He, R.L. Zhu, L. Ling, W.X. Zhang, Q.Z. Chen, Phosphate modified magnetite@ferrihydrite as an magnetic adsorbent for Cd(II) removal from water, soil, and sediment, Sci. Total Environ., 764 (2020), doi: 10.1016/j. scitotenv.2020.142846.
  18. P. Lu, T.H. Chen, H.B. Liu, P. Li, S.C. Peng, Y. Yang, Green preparation of nanoporous pyrrhotite by thermal treatment of pyrite as an effective Hg(II) adsorbent: performance and mechanism, Minerals, 9 (2019), doi: 10.3390/min9020074.
  19. M.M. Lu, Y.B. Zhang, Y.L. Zhou, Z.J. Su, B.B. Liu, G.H. Li, T. Jiang, Adsorption–desorption characteristics and mechanisms of Pb(II) on natural vanadium, titanium-bearing magnetite-humic acid, Powder Technol., 344 (2019) 947–958.
  20. Y.B. Zhang, M.M. Lu, Y.L. Zhou, Z.J. Su, B.B. Liu, G.H. Li, T. Jiang, Interfacial interaction between humic acid and vanadium, titanium-bearing magnetite (VTM) particles, Miner. Proc. Extr. Metall. Rev., 41 (2020) 75–84.
  21. H. Sehaqui, L. Schaufellberger, B. Michen, T. Zimmermann, Humic acid desorption from a positively charged nanocellulose surface, J. Colloid Interface Sci., 504 (2017) 500–506.
  22. Y.L. Zhou, Y.B. Zhang, P. Li, G.H. Li, T. Jiang, Comparative study on the adsorption interactions of humic acid onto natural magnetite, hematite and quartz: effect of initial HA concentration, Powder Technol., 251 (2014) 1–8.
  23. Y.L. Zhou, Y.B. Zhang, G.H. Li, Y.D. Wu, T. Jiang, A further study on adsorption interaction of humic acid on natural magnetite, hematite and quartz in iron ore pelletizing process: effect of the solution pH value, Powder Technol., 271 (2015) 155–166.
  24. Y.B. Zhang, M.M. Lu, Z.J. Su, J. Wang, Y.K. Tu, X.J. Chen, C.T. Cao, F.Q. Gu, S. Liu, T. Jiang, Interfacial reaction between humic acid and Ca-montmorillonite: application in the preparation of a novel pellet binder, Appl. Clay Sci., 180 (2019), doi: 10.1016/j.clay.2019.105177.
  25. B.J. Ni, Q.S. Huang, C. Wang, T.Y. Ni, J. Sun, W. Wei, Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge, Chemosphere, 219 (2019) 351–357.
  26. J.Q. Deng, Y.G. Liu, S.B. Liu, G.M. Zeng, X.F. Tan, B.Y. Huang, X.J. Tang, S.F. Wang, Q. Hua, Z.L. Yan, Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar, J. Colloid Interface Sci., 506 (2017) 355–364.
  27. J.H. Park, Y.S. Ok, S.H. Kim, J.S. Cho, J.S. Heo, R.D. Delaune, D.C. Seo, Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions, Chemosphere, 142 (2016) 77–83.
  28. C.Z. Fan, K. Li, J.X. Li, D.W. Ying, Y.L. Wang, J.P. Jia, Comparative and competitive adsorption of Pb(II) and Cu(II) using tetraethylenepentamine modified chitosan/CoFe2O4 particles, J. Hazard. Mater., 326 (2017) 211–220.
  29. A.G. Liu, R.D. Gonzalez, Modeling adsorption of copper(II), cadmium(II) and lead(II) on purified humic acid, Langmuir, 16 (2000) 3902–3909.
  30. M.M. Lu, Y.B. Zhang, Z.J. Su, Y.K. Tu, J. Wang, S. Liu, J.C. Liu, T. Jiang, The comprehensive investigation on removal mechanism of Cr(VI) by humic acid-Fe(II) system structured on V, Ti-bearing magnetite surface, Adv. Powder Technol., 32 (2021) 37–51.
  31. Y.L. Zhou, Y.B. Zhang, G.H. Li, T. Jiang, Effect of metal cations on the fluvic acid (FA) adsorption onto natural iron oxide in iron ore pelletizing process, Powder Technol., 302 (2017) 90–99.
  32. B. Jiang, Y.F. Gong, J.N. Gao, T. Sun, Y.J. Liu, N. Oturan, M.A. Oturan, The reduction of Cr(VI) to Cr(III) mediated by environmentally relevant carboxylic acids: state-of-the-art and perspectives, J. Hazard. Mater., 365 (2019) 205–226.
  33. Q. Zhu, Y. Wang, M.F. Li, K. Liu, C.Y. Hu, K.L. Yan, G. Sun, D. Wang, Activable carboxylic acid functionalized crystalline nanocellulose/PVA-co-PE composite nanofibrous membrane with enhanced adsorption for heavy metal ions, Sep. Purif. Technol., 186 (2017) 70–77.
  34. L.H. Abdel-Rahman, N.M. Ismail, M. Ismael, A.M. Abu-Dief, E.A. Ahmed, Synthesis, characterization, DFT calculations and biological studies of Mn(II), Fe(II), Co(II) and Cd(II) complexes based on a tetradentate ONNO donor schiff base ligand, J. Mol. Struct., 1134 (2017) 851–862.
  35. F.J. Rodríguez, P. Schlenger, M. García-Valverde, Monitoring changes in the structure and properties of humic substances following ozonation using UV–vis, FTIR and 1H NMR techniques, Sci. Total Environ., 541 (2016) 623–637.
  36. K. Yang, H.B. Peng, Y.H. Wen, N. Li, Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles, Appl. Surf. Sci., 256 (2010) 3093–3097.
  37. Y.A. Chesalov, T.V. Andrushkevich, V.I. Sobolev, G.B. Chernobay, FTIR study of β-picoline and pyridine-3-carbaldehyde transformation on V-Ti-O catalysts. The effect of sulfate content on β-picoline oxidation into nicotinic acid, J. Mol. Catal. A: Chem., 380 (2013) 118–130.
  38. H.F. Chen, Q. Li, M.X. Wang, D.B. Ji, W.F. Tan, XPS and two-dimensional FTIR correlation analysis on the binding characteristics of humic acid onto kaolinite surface, Sci. Total Environ., 724 (2020), doi: 10.1016/j.scitotenv.2020.138154.
  39. L.H.S. Vieira, C.M.S. Sabina, F.H.S. Júnior, J.S. Rocha, M.O. Castro, R.S. Alencar, L.S. da Costa, B.C. Viana, A.J. Paula, J.M. Soares, A.G.S. Filho, L. Otubo, P.B.A. Fechine, A. Ghosh, O.P. Ferreira, Strategic design of magnetic carbonaceous nanocomposites and its application as multifunctional adsorbent, Carbon, 161 (2020) 758–771.
  40. M. Zhu, H.T. Wang, A.A. Keller, T. Wang, F.T. Li, The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths, Sci. Total Environ., 487 (2014) 375–380.
  41. Y.J. Dai, J.J. Li, Q.Y. Sun, Z.H. Liu, Adsorption isotherm, kinetic modeling and mechanism of neutral red on Auricularia auricularia, Desal. Water Treat., 198 (2020) 335–344.
  42. Y.T. Han, X. Cao, X. Ouyang, S.P. Sohi, J.W. Chen, Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr(VI) from aqueous solution: effects of production conditions and particle size, Chemosphere, 145 (2016) 336–341.
  43. J.P. Simonin, On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics, Chem. Eng. J., 300 (2016) 254–263.
  44. S.X. Bai, M. Chu, L.M. Zhou, Z.B. Chang, C. Zhang, H. Guo, B.M. Liu, S.T. Wang, Modified oil shale ash and oil shale ash zeolite for the removal of Cd2+ ion from aqueous solutions, Environ. Technol., 40 (2019) 1485–1493.
  45. M. Naushad, S. Vasudevan, G. Sharma, A. Kumar, Z.A. Alothman, Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin, Desal. Water Treat., 57 (2016) 18551–18559.
  46. L. Leila, R. Cheraghi, R. Dabbagh, G. Mckay, Removal of cobalt(II) ions from aqueous solutions utilizing the pre-treated 2-Hypnea Valentiae algae: equilibrium, thermodynamic, and dynamic studies, Chem. Eng. J., 331 (2018) 39–47.
  47. C.J. Radke, J.M. Prausnitz, Thermodynamics of multi-solute adsorption from dilute liquid solutions, AICHE J., 18 (1972) 761–768.
  48. Z.F. Ren, X. Xu, X. Wang, B.Y. Gao, Q.Y. Yue, W. Song, L. Zhang, H.T. Wang, FTIR, Raman, and XPS analysis during phosphate, nitrate and Cr(VI) removal by amine cross-linking biosorbent, J. Colloid Interface Sci., 468 (2016) 313–323.
  49. S.Y. Bao, L.H. Tang, K. Li, P. Ning, J.H. Peng, H.B. Guo, T.T. Zhu, Y. Liu, Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent, J. Colloid Interface Sci., 462 (2016) 235–242.
  50. S.Z. Guo, P.P. Jiao, Z.G. Dan, N. Duan, G.Y. Chen, J. Zhang, Preparation of L-arginine modified magnetic adsorbent by one-step method for removal of Zn(II) and Cd(II) from aqueous solution, Chem. Eng. J., 317 (2017) 999–1011.
  51. N. Rahman, M. Nasir, Application of Box–Behnken design and desirability function in the optimization of Cd(II) removal from aqueous solution using poly(o-phenylenediamine)/ hydrous zirconium oxide composite: equilibrium modeling, kinrtic and thermodynamic studies, Environ. Sci. Pollut. Res., 25 (2018) 26114–26134.
  52. M. Alimohammady, M. Jahangiri, F. Kiani, H. Tahermansouri, A new modified MWCNTs with 3-aminopyrazoble as a nanoadsorbent for Cd(II) removal from aqueous solutions, J. Environ. Chem. Eng., 5 (2017) 3405–3417.
  53. X. Zhong, W. Liang, Z.P. Lu, B.W. Hu, Highly efficient enrichment mechanism of U(VI) and Eu(III) by covalent organic frameworks with intramolecular hydrogen-bonding from solutions, Appl. Surf. Sci., 504 (2020), doi: 10.1016/j. apsusc.2019.144403.
  54. M. Todea, M. Muresan-Pop, S. Simon, C. Moisescu-Goia, V. Simon, D. Eniu, XPS investigation of new solid forms of 5-fluorouracil with piperazine, J. Mol. Struct., 1165 (2018) 120–125.
  55. G. Lakshminarayana, S.O. Baki, A. Lira, M.I. Sayyed, I.V. Kityk, M.K. Halimah, M.A. Mahdi, X-ray photoelectron spectroscopy (XPS) and radiation shielding parameters investigations for zinc molybdenum borotellurite glasses containing different network modifiers, J. Mater. Sci., 52 (2017) 7394–7414.
  56. W.C. Yang, Q.Z. Tang, J.M. Wei, Y.J. Ran, L.Y. Chai, H.Y. Wang, Enhanced removal of Cd(II) and Pb(II) by composites of mesoporous carbon stabilized alumina, Appl. Surf. Sci., 369 (2016) 215–223.