References

  1. A.R. Ribeiro, O.C. Nunes, M.F. Pereira, A.M. Silva, An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU, Environ. Int., 75 (2015) 33–51.
  2. M.O. Barbosa, N.F. Moreira, A.R. Ribeiro, M.F. Pereira, A.M. Silva, Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495, Water Res., 94 (2016) 257–279.
  3. Z. Pan, E.A. Stemmler, H.J. Cho, W. Fan, L.A. LeBlanc, H.H. Patterson, A. Amirbahman, Photocatalytic degradation of 17α-ethinylestradiol (EE2) in the presence of TiO2-doped zeolite, J. Hazard. Mater., 279 (2014) 17–25.
  4. S. Sarkar, S. Ali, L. Rehmann, G. Nakhla, M.B. Ray, Degradation of estrone in water and wastewater by various advanced oxidation processes, J. Hazard. Mater., 278 (2014) 16–24.
  5. J.C. Carlson, M.I. Stefan, J.M. Parnis, C.D. Metcalfe, Direct UV photolysis of selected pharmaceuticals, personal care products and endocrine disruptors in aqueous solution, Water Res, 84 (2015) 350–361.
  6. Y. Li, A. Zhang, Removal of steroid estrogens from waste activated sludge using Fenton oxidation: Influencing factors and degradation intermediates, Chemosphere, 105 (2014) 24–30.
  7. Y. Lin, Z. Peng, X. Zhang, Ozonation of estrone, estradiol, diethylstilbestrol in waters, Desalination, 249 (2009) 235–240.
  8. K. Sornalingam, A. McDonagh, J.L. Zhou, M.A.H. Johir, M.B. Ahmed, Photocatalysis of estrone in water and wastewater: comparison between Au-TiO2 nanocomposite and TiO2, and degradation by-products, Sci. Total Environ., 610 (2018) 521–530.
  9. J. Han, Y. Liu, N. Singhal, L. Wang, W. Gao, Comparative photocatalytic degradation of estrone in water by ZnO and TiO2 under artificial UVA and solar irradiation, Chem. Eng. J., 213 (2012) 150–162.
  10. Y. Souissi, S. Bourcier, S. Bouchonnet, C. Genty, M. Sablier, Estrone direct photolysis: by-product identification using LC-Q-TOF, Chemosphere, 87 (2012) 185–193.
  11. M.R. Eskandarian, H. Choi, M. Fazli, M.H. Rasoulifard, Effect of UV-LED wavelengths on direct photolytic and TiO2 photocatalytic degradation of emerging contaminants in water, Chem. Eng. J., 300 (2016) 414–422.
  12. M.J. Arlos, R. Liang, M.M. Hatat-Fraile, L.M. Bragg, N.Y. Zhou, M.R. Servos, S.A. Andrews, Photocatalytic decomposition of selected estrogens and their estrogenic activity by UV-LED irradiated TiO2 immobilized on porous titanium sheets via thermal-chemical oxidation, J. Hazard. Mater., 318 (2016) 541–550.
  13. M.J. Arlos, M.M. Hatat-Fraile, R. Liang, L.M. Bragg, N.Y. Zhou, S.A. Andrews, M.R. Servos, Photocatalytic decomposition of organic micropollutants using immobilized TiO2 having different isoelectric points, Water Res., 101 (2016) 351–361.
  14. Y. Huang, C. Cui, D. Zhang, L. Li, D. Pan, Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon, Chemosphere, 119 (2015) 295–301.
  15. N. Migowska, M. Caban, P. Stepnowski, J. Kumirska, Simultaneous analysis of non-steroidal anti-inflammatory drugs and estrogenic hormones in water and wastewater samples using gas chromatography–mass spectrometry and gas chromatography with electron capture detection, Sci. Total Environ., 441 (2012) 77–88.
  16. M. Mehrjouei, S. Müller, D. Möller, A review on photocatalytic ozonation used for the treatment of water and wastewater, Chem. Eng. J., 263 (2015) 209–219.
  17. G. Liao, D. Zhu, J. Zheng, J. Yin, B. Lan, L. Li, Efficient mineralization of bisphenol A by photocatalytic ozonation with TiO2–graphene hybrid, J. Taiwan Inst. Chem. Eng., 67 (2016) 300–305.
  18. J. Bing, C. Hu, L. Zhang, Enhanced mineralization of pharmaceuticals by surface oxidation over mesoporous γ-Ti-Al2O3 suspension with ozone, Appl. Catal., B, 202 (2017) 118–126.
  19. K. Thamaphat, P. Limsuwan, B. Ngotawornchai, Phase characterization of TiO2 powder by XRD and TEM, Kasetsart J. (Nat. Sci.), 42 (2008) 357–361.
  20. P. Nuengmatcha, S. Chanthai, R. Mahachai, W.-C. Oh, Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation, Dyes Pigm., 134 (2016) 487–497.
  21. R.L. Fernández, J.A. McDonald, S.J. Khan, P. Le-Clech, Removal of pharmaceuticals and endocrine disrupting chemicals by a submerged membrane photocatalysis reactor (MPR), Sep. Purif. Technol., 127 (2014) 131–139.
  22. R. Szabó, C. Megyeri, E. Illés, K. Gajda-Schrantz, P. Mazellier, A. Dombi, Phototransformation of ibuprofen and ketoprofen in aqueous solutions, Chemosphere, 84 (2011) 1658–1663.
  23. G. Varshney, S.R. Kanel, D.M. Kempisty, V. Varshney, A. Agrawal, E. Sahle-Demessie, R.S. Varma, M.N. Nadagouda, Nanoscale TiO2 films and their application in remediation of organic pollutants, Coord. Chem. Rev., 306 (2016) 43–64.
  24. Z. Clemente, V. Castro, C. Jonsson, L. Fraceto, Ecotoxicology of nano-TiO2–an evaluation of its toxicity to organisms of aquatic ecosystems, Int. J. Environ. Res., 6 (2011) 33–50.
  25. X. Van Doorslaer, K. Demeestere, P.M. Heynderickx, H. Van Langenhove, J. Dewulf, UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: reaction kinetics and role of adsorption, Appl. Catal., B, 101 (2011) 540–547.
  26. J.I. Sobral Romao, Photocatalytic Water Treatment: Substrate- Specific Activity of Titanium Dioxide, Faculty of Science and Technology, Universiteit Twente, 2015.
  27. M. Lu, P. Pichat, Photocatalysis and Water Purification: From Fundamentals to Recent Applications, John Wiley & Sons, Weinheim, 2013.
  28. A. Rodríguez, R. Rosal, J. Perdigón-Melón, M. Mezcua, A. Agüera, M. Hernando, P. Letón, A. Fernández-Alba, E. García-Calvo, Ozone-based Technologies in Water and Wastewater Treatment, In: The Handbook of Environmental Chemistry, Springer, Berlin, Heidelberg, 2008.
  29. W.Z. Tang, Physicochemical Treatment of Hazardous Wastes, CRC Press, 2016.
  30. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal., B, 49 (2004) 1–14.
  31. T.E. Doll, F.H. Frimmel, Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials—determination of intermediates and reaction pathways, Water Res., 38 (2004) 955–964.
  32. H.B. Hadjltaief, M.B. Zina, M.E. Galvez, P. Da Costa, Photocatalytic degradation of methyl green dye in aqueous solution over natural clay-supported ZnO–TiO2 catalysts, J. Photochem. Photobiol., A, 315 (2016) 25–33.
  33. Y. He, N.B. Sutton, H.H. Rijnaarts, A.A. Langenhoff, Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation, Appl. Catal., B, 182 (2016) 132–141.
  34. J. Porras, C. Bedoya, J. Silva-Agredo, A. Santamaría, J.J. Fernández, R.A. Torres-Palma, Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water, Water Res., 94 (2016) 1–9.
  35. F. Wang, Y. Feng, P. Chen, Y. Wang, Y. Su, Q. Zhang, Y. Zeng, Z. Xie, H. Liu, Y. Liu, Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: kinetics, mechanism, and antibacterial activity elimination, Appl. Catal., B, 227 (2018) 114–122.
  36. M. Chen, J. Yao, Y. Huang, H. Gong, W. Chu, Enhanced photocatalytic degradation of ciprofloxacin over Bi2O3/(BiO)2CO3 heterojunctions: efficiency, kinetics, pathways, mechanisms and toxicity evaluation, Chem. Eng. J., 334 (2018) 453–461.