References
- A.R. Ribeiro, O.C. Nunes, M.F. Pereira, A.M. Silva, An
overview on the advanced oxidation processes applied for the
treatment of water pollutants defined in the recently launched
Directive 2013/39/EU, Environ. Int., 75 (2015) 33–51.
- M.O. Barbosa, N.F. Moreira, A.R. Ribeiro, M.F. Pereira,
A.M. Silva, Occurrence and removal of organic micropollutants:
an overview of the watch list of EU Decision 2015/495, Water
Res., 94 (2016) 257–279.
- Z. Pan, E.A. Stemmler, H.J. Cho, W. Fan, L.A. LeBlanc,
H.H. Patterson, A. Amirbahman, Photocatalytic degradation
of 17α-ethinylestradiol (EE2) in the presence of TiO2-doped
zeolite, J. Hazard. Mater., 279 (2014) 17–25.
- S. Sarkar, S. Ali, L. Rehmann, G. Nakhla, M.B. Ray, Degradation
of estrone in water and wastewater by various advanced
oxidation processes, J. Hazard. Mater., 278 (2014) 16–24.
- J.C. Carlson, M.I. Stefan, J.M. Parnis, C.D. Metcalfe, Direct UV
photolysis of selected pharmaceuticals, personal care products
and endocrine disruptors in aqueous solution, Water Res,
84 (2015) 350–361.
- Y. Li, A. Zhang, Removal of steroid estrogens from waste
activated sludge using Fenton oxidation: Influencing factors
and degradation intermediates, Chemosphere, 105 (2014) 24–30.
- Y. Lin, Z. Peng, X. Zhang, Ozonation of estrone, estradiol,
diethylstilbestrol in waters, Desalination, 249 (2009) 235–240.
- K. Sornalingam, A. McDonagh, J.L. Zhou, M.A.H. Johir,
M.B. Ahmed, Photocatalysis of estrone in water and wastewater:
comparison between Au-TiO2 nanocomposite and TiO2,
and degradation by-products, Sci. Total Environ., 610 (2018)
521–530.
- J. Han, Y. Liu, N. Singhal, L. Wang, W. Gao, Comparative
photocatalytic degradation of estrone in water by ZnO and
TiO2 under artificial UVA and solar irradiation, Chem. Eng. J.,
213 (2012) 150–162.
- Y. Souissi, S. Bourcier, S. Bouchonnet, C. Genty, M. Sablier,
Estrone direct photolysis: by-product identification using
LC-Q-TOF, Chemosphere, 87 (2012) 185–193.
- M.R. Eskandarian, H. Choi, M. Fazli, M.H. Rasoulifard,
Effect of UV-LED wavelengths on direct photolytic and TiO2
photocatalytic degradation of emerging contaminants in water,
Chem. Eng. J., 300 (2016) 414–422.
- M.J. Arlos, R. Liang, M.M. Hatat-Fraile, L.M. Bragg, N.Y. Zhou,
M.R. Servos, S.A. Andrews, Photocatalytic decomposition of
selected estrogens and their estrogenic activity by UV-LED
irradiated TiO2 immobilized on porous titanium sheets via
thermal-chemical oxidation, J. Hazard. Mater., 318 (2016)
541–550.
- M.J. Arlos, M.M. Hatat-Fraile, R. Liang, L.M. Bragg, N.Y. Zhou,
S.A. Andrews, M.R. Servos, Photocatalytic decomposition
of organic micropollutants using immobilized TiO2 having
different isoelectric points, Water Res., 101 (2016) 351–361.
- Y. Huang, C. Cui, D. Zhang, L. Li, D. Pan, Heterogeneous
catalytic ozonation of dibutyl phthalate in aqueous solution in
the presence of iron-loaded activated carbon, Chemosphere,
119 (2015) 295–301.
- N. Migowska, M. Caban, P. Stepnowski, J. Kumirska,
Simultaneous analysis of non-steroidal anti-inflammatory
drugs and estrogenic hormones in water and wastewater
samples using gas chromatography–mass spectrometry and
gas chromatography with electron capture detection, Sci. Total
Environ., 441 (2012) 77–88.
- M. Mehrjouei, S. Müller, D. Möller, A review on photocatalytic
ozonation used for the treatment of water and wastewater,
Chem. Eng. J., 263 (2015) 209–219.
- G. Liao, D. Zhu, J. Zheng, J. Yin, B. Lan, L. Li, Efficient
mineralization of bisphenol A by photocatalytic ozonation with
TiO2–graphene hybrid, J. Taiwan Inst. Chem. Eng., 67 (2016)
300–305.
- J. Bing, C. Hu, L. Zhang, Enhanced mineralization of
pharmaceuticals by surface oxidation over mesoporous γ-Ti-Al2O3 suspension with ozone, Appl. Catal., B, 202 (2017)
118–126.
- K. Thamaphat, P. Limsuwan, B. Ngotawornchai, Phase
characterization of TiO2 powder by XRD and TEM, Kasetsart
J. (Nat. Sci.), 42 (2008) 357–361.
- P. Nuengmatcha, S. Chanthai, R. Mahachai, W.-C. Oh,
Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite
for degradation of dye pollutants (methylene blue,
texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under
ultrasonic irradiation, Dyes Pigm., 134 (2016) 487–497.
- R.L. Fernández, J.A. McDonald, S.J. Khan, P. Le-Clech, Removal
of pharmaceuticals and endocrine disrupting chemicals by a
submerged membrane photocatalysis reactor (MPR), Sep. Purif.
Technol., 127 (2014) 131–139.
- R. Szabó, C. Megyeri, E. Illés, K. Gajda-Schrantz, P. Mazellier,
A. Dombi, Phototransformation of ibuprofen and ketoprofen
in aqueous solutions, Chemosphere, 84 (2011) 1658–1663.
- G. Varshney, S.R. Kanel, D.M. Kempisty, V. Varshney,
A. Agrawal, E. Sahle-Demessie, R.S. Varma, M.N. Nadagouda,
Nanoscale TiO2 films and their application in remediation
of organic pollutants, Coord. Chem. Rev., 306 (2016) 43–64.
- Z. Clemente, V. Castro, C. Jonsson, L. Fraceto, Ecotoxicology
of nano-TiO2–an evaluation of its toxicity to organisms of
aquatic ecosystems, Int. J. Environ. Res., 6 (2011) 33–50.
- X. Van Doorslaer, K. Demeestere, P.M. Heynderickx, H. Van
Langenhove, J. Dewulf, UV-A and UV-C induced photolytic
and photocatalytic degradation of aqueous ciprofloxacin
and moxifloxacin: reaction kinetics and role of adsorption,
Appl. Catal., B, 101 (2011) 540–547.
- J.I. Sobral Romao, Photocatalytic Water Treatment: Substrate-
Specific Activity of Titanium Dioxide, Faculty of Science and
Technology, Universiteit Twente, 2015.
- M. Lu, P. Pichat, Photocatalysis and Water Purification: From
Fundamentals to Recent Applications, John Wiley & Sons,
Weinheim, 2013.
- A. Rodríguez, R. Rosal, J. Perdigón-Melón, M. Mezcua,
A. Agüera, M. Hernando, P. Letón, A. Fernández-Alba,
E. García-Calvo, Ozone-based Technologies in Water and
Wastewater Treatment, In: The Handbook of Environmental
Chemistry, Springer, Berlin, Heidelberg, 2008.
- W.Z. Tang, Physicochemical Treatment of Hazardous Wastes,
CRC Press, 2016.
- I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic
degradation of azo dyes in aqueous solution: kinetic and
mechanistic investigations: a review, Appl. Catal., B, 49 (2004)
1–14.
- T.E. Doll, F.H. Frimmel, Kinetic study of photocatalytic
degradation of carbamazepine, clofibric acid, iomeprol and
iopromide assisted by different TiO2 materials—determination
of intermediates and reaction pathways, Water Res., 38 (2004)
955–964.
- H.B. Hadjltaief, M.B. Zina, M.E. Galvez, P. Da Costa,
Photocatalytic degradation of methyl green dye in aqueous
solution over natural clay-supported ZnO–TiO2 catalysts,
J. Photochem. Photobiol., A, 315 (2016) 25–33.
- Y. He, N.B. Sutton, H.H. Rijnaarts, A.A. Langenhoff, Degradation
of pharmaceuticals in wastewater using immobilized TiO2
photocatalysis under simulated solar irradiation, Appl. Catal.,
B, 182 (2016) 132–141.
- J. Porras, C. Bedoya, J. Silva-Agredo, A. Santamaría,
J.J. Fernández, R.A. Torres-Palma, Role of humic substances in
the degradation pathways and residual antibacterial activity
during the photodecomposition of the antibiotic ciprofloxacin
in water, Water Res., 94 (2016) 1–9.
- F. Wang, Y. Feng, P. Chen, Y. Wang, Y. Su, Q. Zhang,
Y. Zeng, Z. Xie, H. Liu, Y. Liu, Photocatalytic degradation
of fluoroquinolone antibiotics using ordered mesoporous
g-C3N4 under simulated sunlight irradiation: kinetics,
mechanism, and antibacterial activity elimination, Appl.
Catal., B, 227 (2018) 114–122.
- M. Chen, J. Yao, Y. Huang, H. Gong, W. Chu, Enhanced
photocatalytic degradation of ciprofloxacin over Bi2O3/(BiO)2CO3 heterojunctions: efficiency, kinetics, pathways,
mechanisms and toxicity evaluation, Chem. Eng. J., 334 (2018)
453–461.