References
- J. Malina, A. Rađenović, Kinetic aspects of methylene blue
adsorption on blast furnace sludge, Chem. Biochem. Eng. Q.,
28 (2014) 491–498.
- T. Yin, Y. Wu, P. Shi, A.M. Li, B. Xu, W.H. Chu, Y. Pan, Anionexchange
resin adsorption followed by electrolysis: a new
disinfection approach to control halogenated disinfection
byproducts in drinking water, Water Res., 168 (2020) 115144,
doi: 10.1016/j.watres.2019.115144.
- C. Wolf, A. Pavese, U. von Gunten, T. Kohn, Proxies to
monitor the inactivation of viruses by ozone in surface water
and wastewater effluent, Water Res., 166 (2019) 115088,
doi: 10.1016/j.watres.2019.115088.
- C. Benally, S.A. Messele, M.G. Gamal El-Din, Adsorption of
organic matter in oil sands process water (OSPW) by carbon
xerogel, Water Res., 145 (2019) 402–411.
- Y.F. Wei, H. Liu, C.B. Liu, S.L. Luo, Y.T. Liu, X.W. Yu, J.H. Ma,
K. Yin, H.P. Feng, Fast and efficient removal of As(III) from
water by CuFe2O4 with peroxymonosulfate: effects of
oxidation and adsorption, Water Res., 150 (2019) 182–190.
- C. Patra, T. Shahnaz, S. Subbiah, S. Narayanasamy, Comparative
assessment of raw and acid-activated preparations of novel
Pongamia pinnata shells for adsorption of hexavalent
chromium from simulated wastewater, Environ. Sci. Pollut.
Res., 27 (2020) 14836–14851.
- T. Shahnaz, C. Patra, V. Sharma, N. Selvaraju, A comparative
study of raw, acid-modified and EDTA-complexed Acacia
auriculiformis biomass for the removal of hexavalent
chromium, Chem. Ecol., 36 (2020) 360–381.
- R.W. Sabnis, Handbook of Acid-Base Indicators, Taylor & Francis
Group, LLC., CRC Press (Taylor & Francis Group) Boca Raton,
London, New York, 2008, pp. 43–44, ISBN 978-0-8493-8218-5
- M. Ghaedi, H. Khajesharifi, A.H. Yadkuri, M. Roosta,
R. Sahraei, A. Daneshfar, Cadmium hydroxide nanowire
loaded on activated carbon as efficient adsorbent for removal
of Bromocresol Green, Spectrochim. Acta, Part A, 86 (2012)
62–68.
- A. Shokrollahi, A. Alizadeh, Z. Malekhosseini, M. Ranjbar,
Removal of Bromocresol Green from aqueous solution via
adsorption on Ziziphus nummularia as a new, natural, and
low-cost adsorbent: kinetic and thermodynamic study of
removal process, J. Chem. Eng. Data, 56 (2011) 3738–3746.
- Y.J. Lu, B. Wei, Y. Wang, J.Z. Li, Studies on the removal of
bromocresol green from water by solvent sublation, Sep. Sci.
Technol., 42 (2007) 1901–1911.
- M. Özdemir, Ö. Durmuş, Ö. Şahin, C. Saka, Removal of
methylene blue, methyl violet, rhodamine B, alizarin red, and
bromocresol green dyes from aqueous solutions on activated
cotton stalks, Desal. Water Treat., 57 (2015) 18038–18048.
- D. Liu, J. Yuan, J.W. Li, G.H. Zhang, Preparation of chitosan
poly(methacrylate) composites for adsorption of Bromocresol
Green, ACS Omega, 4 (2019) 12680–12686.
- A.I. Sokolova, E.R. Pavlova, D.V. Bagrov, D.V. Klinov,
K.V. Shaitan, Dye adsorption onto electrospun films made of
polylactic acid and gelatin, Mol. Cryst. Liq. Cryst., 669 (2018)
126–133.
- V.K.-M. Au, Recent advances in the use of metal-organic
frameworks for dye adsorption, Front. Chem., 28 (2020) 1–7,
doi: 10.3389/fchem.2020.00708.
- X.C. Xie, X.J. Huang, W.X. Lin, Y.F. Chen, X.R. Lang,
Y.J. Wang, L.H. Gao, H.L. Zhu, J.J. Chen, Selective adsorption
of cationic dyes for stable metal–organic framework ZJU-48,
ACS Omega, 5 (2020) 13595–13600.
- J.-P. Zhang, Y.-B. Zhang, J.-B. Lin, X.-M. Chen, Metal azolate
frameworks: from crystal engineering to functional materials,
Chem. Rev., 112 (2012) 1001–1033.
- X.-C. Huang, Y.-Y. Lin, J.-P. Zhang, X.-M. Chen, Liganddirected
strategy for zeolite‐type metal–organic frameworks:
zinc(II) imidazolates with unusual zeolitic topologies, Angew.
Chem. Int. Ed., 45 (2006) 1557–1559.
- K.S. Park, N. Zheng, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-
Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional
chemical and thermal stability of zeolitic imidazolate
frameworks, Proc. National Acad. Sci., 103 (2006) 10186–10191.
- X.Y. Li, X.Y. Gao, L.H. Ai, J. Jiang, Mechanistic insight into the
interaction and adsorption of Cr(VI) with zeolitic imidazolate
framework-67 microcrystals from aqueous solution, Chem.
Eng. J., 274 (2015) 238–246.
- Y. Pan, Z. Li, Z. Zhang, X.-S. Tong, H. Li, C.-Z. Jia, B. Liu,
C.-Y. Sun, L.-Y. Yang, G.-J. Chen, D.-Y. Ma, Adsorptive removal
of phenol from aqueous solution with zeolitic imidazolate
framework-67, J. Environ. Manage., 169 (2016) 167–173.
- K.-Y.A. Lin, H.-A. Chang, Ultra-high adsorption capacity
of zeolitic imidazole framework-67 (ZIF-67) for removal of
malachite green from water, Chemosphere, 139 (2015) 624–631.
- Y. Li, K. Zhou, M. He, J.F. Yao, Synthesis of ZIF-8 and ZIF-67
using mixed-base and their dye adsorption, Microporous
Mesoporous Mater., 234 (2016) 287–292.
- X.-D. Du, C.-C. Wang, J.-G. Liu, X.-D. Zhao, J. Zhong, Y.-X. Li,
J. Li, P. Wang, Extensive and selective adsorption of ZIF-67
towards organic dyes: performance and mechanism, J. Colloid
Interface Sci., 506 (2017) 437–441.
- Y. Feng, Y. Li, M.Y. Xu, S.C. Liu, J.F. Yao, Fast adsorption
of methyl blue on zeolitic imidazolate framework-8 and its
adsorption mechanism, RSC Adv., 6 (2016) 109608–109612.
- L.-B. Sun, J.-R. Li, J.H. Park, H.-C. Zhou, Cooperative templatedirected
assembly of mesoporous metal–organic frameworks,
J. Am. Chem. Soc., 134 (2011) 126–129.
- H.P. Hu, S.Q. Liu, C.Y. Chen, J.P. Wang, Y. Zou, L.H. Lin,
S.Z. Yao, Two novel zeolitic imidazolate frameworks (ZIFs) as
sorbents for solid-phase extraction (SPE) of polycyclic aromatic
hydrocarbons (PAHs) in environmental water samples,
Analyst, 139 (2014) 5818–5826.
- E.M. Forman, B.R. Pimentel, K.J. Ziegler, R.P. Lively,
S. Vasenkov, Microscopic diffusion of pure and mixed methane
and carbon dioxide in ZIF-11 by high field diffusion NMR,
Microporous Mesoporous Mater., 248 (2017) 158–163.
- M. He, J.F. Yao, Q. Liu, Z.X. Zhong, H.T. Wang, Toluene-assisted
synthesis of RHO-type zeolitic imidazolate frameworks:
synthesis and formation mechanism of ZIF-11 and ZIF-12,
Dalton Trans., 42 (2013) 16608–16613.
- T. Koley, P. Bandyopadhyay, A.K. Mohanty, S. Banerjee,
Synthesis and characterization of new aromatic poly(ether
imide)s and their gas transport properties, Eur. Polym. J.,
49 (2013) 4212–4223.
- M. Şafak Boroğlu, Structural characterization and gas
permeation properties of polyetherimide (PEI)/zeolitic
imidazolate (ZIF-11) mixed matrix membranes, J. Turkish
Chem. Soc., Sect. A: Chem., 3 (2016) 183–206.
- A. Madanagopal, S. Periandy, P. Gayathri, S. Ramalingam,
S. Xavier, V.K. Ivanov, Spectroscopic and computational
investigation of the structure and pharmacological activity of
1-benzylimidazole, J. Taibah Univ. Sci., 11 (2017) 975–996.
- J.J.M. Órfão, A.I.M. Silva, J.C.V. Pereira, S.A. Barata,
I.M. Fonseca, P.C.C. Faria, M.F.R. Pereira, Adsorption of a
reactive dye on chemically modified activated carbons—
influence of pH, J. Colloid Interface Sci., 296 (2006) 480–489.
- A.B. Yumru, M.S. Boroglu, I. Boz, ZIF-11/Matrimid® mixed
matrix membranes for efficient CO2, CH4 and H2 separations,
Greenhouse Gases Sci. Technol., 8 (2018) 529–541.
- Y.-F. Lin, K.-W. Huang, B.-T. Ko, K.-Y.A. Lin, Bifunctional ZIF-78 heterogeneous catalyst with dual Lewis acidic and basic
sites for carbon dioxide fixation via cyclic carbonate synthesis,
J. CO2 Util., 22 (2017) 178–183.
- M.K. Dahri, L.B.L. Lim, C.C. Mei, Cempedak durian as a
potential biosorbent for the removal of Brilliant Green dye from
aqueous solution: equilibrium, thermodynamics and kinetics
studies, Environ. Monit. Assess., 187 (2015) 546.
- Z. Aksu, Application of biosorption for the removal of organic
pollutants: a review, Process Biochem., 40 (2005) 997–1026.
- K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Pore- and
solid diffusion-kinetics in fixed-bed adsorption under constantpattern
conditions, Ind. Eng. Chem. Fundam., 5 (1966) 212–223.
- B. Van der Bruggen, Freundlich Isotherm, E. Drioli, L. Giorno,
Eds., Encyclopedia of Membranes, Springer, Berlin, Heidelberg,
2014, pp. 1–2.
- M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on
promoted iron catalysts, Acta Physicochim. URSS, 12 (1940)
217–222.
- K. Vijayaraghavan, T.V.N. Padmesh, K. Palanivelu, M. Velan,
Biosorption of nickel(II) ions onto Sargassum wightii: application
of two-parameter and three-parameter isotherm models,
J. Hazard. Mater., 133 (2006) 304–308.
- J.P. Hobson, Physical adsorption isotherms extending
from ultra-high vacuum to vapor pressure, J. Phys. Chem.,
73 (1969) 2720–2727.
- J.-P. Simonin, On the comparison of pseudo-first order and
pseudo-second order rate laws in the modeling of adsorption
kinetics, Chem. Eng. J., 300 (2016) 254–263.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- P. Saha, S. Chowdhury, Insight into Adsorption Thermodynamics,
T. Mizutani, Ed., Thermodynamics, IntechOpen,
16 (2011) 349–364, doi: 10.5772/13474.
- K.M. Krupka, D.I. Kaplan, G.W. Shas, R.J. Serne, V. Mattigod,
Understanding Variation in Partition Coefficient, Kd, Values,
Volume 1: The Kd Model, Methods of Measurement, and
Application of Chemical Reaction Codes, Office of Air and
Radiation, Office of Solid Waste and Emergency Response,
U.S. Environmental Protection Agency, Washington, D.C.,
1999, p. 63.