References

  1. F.A. Amaringo, F. Alberto, A. del Socorro, Adsorption of red 40 dye on rice husk: determination of the equilibrium, kinetic and thermodynamic of the process, Tecnura, 22 (2018) 13–28.
  2. G.E. Walsh, L.H. Bahner, W.B. Horning, Toxicity of textile mill effluents to freshwater and estuarine algae, crustaceans and fishes, Environ. Pollut. Ser. A, 21 (1980) 169–179.
  3. D. Brown, Effects of colorants in the aquatic environment, Ecotoxicol. Environ. Saf., 13 (1987) 139–147.
  4. K.T. Chung, C.E. Cerniglia, Mutagenicity of azo dyes: structureactivity relationships, Mutat. Res., 277 (1992) 201–220.
  5. G. de Aragão Umbuzeiro, H.S. Freeman, S.H. Warren, D.P. de Oliveira, Y. Terao, T. Watanabe, L.D. Claxton, The contribution of azo dyes to the mutagenic activity of the Cristais River, Chemosphere, 60 (2005) 55–64.
  6. H. Moawad, W.M. Abd El-Rahim, M. Khalafallah, Evaluation of biotoxicity of textile dyes using two bioassays, J. Basic Microbiol., 43 (2003) 218–229.
  7. P.A. Carneiro, G.A. Umbuzeiro, D.P. Oliveira, M.V.B. Zanoni, Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes, J. Hazard. Mater., 174 (2010) 694–699.
  8. D.S. Brookstein, Factors associated with textile pattern dermatitis caused by contact allergy to dyes, finishes, foams, and preservatives, Dermatol. Clin., 27 (2009) 309–322.
  9. U. Kamran, H.N. Bhatti, M. Iqbal, S. Jamil, M. Zahid, Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganese nanoparticles synthesized from Cinnamomum verum bark extract, J. Mol. Struct., 1179 (2019) 532–539.
  10. F. Javed, S.W. Ahmad, A. Ikhlaq, A. Rehman, F. Saleem, Elimination of basic blue 9 by electrocoagulation coupled with pelletized natural dead leaves (Sapindus mukorossi) biosorption, Int. J. Phytorem., 23 (2021) 462–473.
  11. I. Anastopoulos, A. Mittal, M. Usman, J. Mittal, G.H. Yu, A. Núñez-Delgado, M. Kornaros, A review on halloysite-based adsorbents to remove pollutants in water and wastewater, J. Mol. Liq., 269 (2018) 855–868.
  12. S. Soni, P.K. Bajpai, J. Mittal, C. Arora, Utilisation of cobalt doped Iron based MOF for enhanced removal and recovery of methylene blue dye from waste water, J. Mol. Liq., 314 (2020) 113642, doi: 10.1016/j.molliq.2020.113642.
  13. S. Noreen, H.N. Bhatti, M. Iqbal, F. Hussain, F.M. Sarim, Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of Acid Black dye, Int. J. Biol. Macromol., 147 (2020) 439–452.
  14. H. Singh, G. Chauhan, A.K. Jain, S.K. Sharma, Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions, J. Environ. Chem. Eng., 5 (2017) 122–135.
  15. L. Pereira, M. Alves, Dyes—Environmental Impact and Remediation, A. Malik, E. Grohmann, Eds., Environmental Protection Strategies for Sustainable Development, Springer, Dordrecht, 2012, pp. 111–162.
  16. F. Gosetti, U. Chiuminatto, E. Mazzucco, G. Calabrese, M.C. Gennaro, E. Marengo, Identification of photodegradation products of Allura Red AC (E129) in a beverage by ultra high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry, Anal. Chim. Acta, 746 (2012) 84–89.
  17. M.M. Sousa, C. Miguel, I. Rodrigues, A.J. Parola, F. Pina, J.S. Seixas de Melo, M.J. Melo, A photochemical study on the blue dye indigo: from solution to ancient Andean textiles, Photochem. Photobiol. Sci., 7 (2008) 1353–1359.
  18. V.K. Gupta, Suhas, Application of low-cost adsorbents for dye removal – a review, J. Environ. Manage., 90 (2009) 2313–2342.
  19. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresour. Technol., 97 (2006) 1061–1085.
  20. A. Hormaza, D. Figueroa, A. Moreno, Evaluation of the removal of an azo dye on corncob by statistical design, Rev. Fac. Cienc., 1 (2012) 61–71.
  21. A. Moreno, D. Figueroa, A. Hormaza, Statistical design for the efficient removal of red dye 40 on corncob, P + L, 7 (2012) 9–19.
  22. Corn, Directorate of Agricultural and Forestry Chains, Department of Agriculture, April 2019. Available at: https://sioc.minagricultura.gov.co/AlimentosBalanceados/ Documentos/2019-03-30%20Cifras%20Sectoriales%20 Ma%C3%ADz.pdf (accessed on 27 May 2020).
  23. L.V. Peñaranda, S.P. Montenegro, P.A. Girardo, Use of agroindustrial waste in Colombia, RIAA, 8 (2017) 141–150.
  24. C. Berrastegui, J.P. Ortega, J.M. Mendoza, Y.E. Gonzáles, R.D. Gómez, Manufacture of densified solid biofuels from corncob, cassava biofuel and mineral coal from the department of Córdoba, Ingeniare. Rev. Chil. Ing., 25 (2017) 643–653.
  25. M.G. Polonia, Technical Aspects of Corn Production in Colombia: Importance of Corn Growing, FENALCE, 2014.
  26. B. Leff, N. Ramankutty, J.A. Foley, Geographic distribution of major crops across the world, Global Biogeochem. Cycles, 18 (2004), doi: 10.1029/2003GB002108.
  27. V.K. Balakrishnan, S. Shirin, A.M. Aman, S.R. de Solla, J. Mathieu-Denoncourt, V.S. Langlois, Genotoxic and carcinogenic products arising from reductive transformations of the azo dye, Disperse Yellow 7, Chemosphere, 146 (2016) 206–215.
  28. C. O’Neill, F.R. Hawkes, D.L. Hawkes, N.D. Lourenço, H.M. Pinheiro, W. Delée, Colour in textile effluents – sources, measurement, discharge consents and simulation: a review, J. Chem. Technol. Biotechnol., 74 (1999) 1009–1018.
  29. A. Hashem, Preparation of a new adsorbent based on wood pulp for the removal of Direct Blue 2 from aqueous solutions, Polym. Plast. Technol. Eng., 45 (2006) 779–783.
  30. G.A. Peluffo, S. Castro, Evaluation of the Adsorption Capacity of Direct Navy Blue Dye (AMD) in Aqueous Solution with Carbon Obtained from Banana Peels, Dis. Universidad de la Costa, 2019.
  31. G.C. Castelar, M.M. Cely, B.M. Cardozo, E.R. Angulo, M.E. Plaza, Adsorption of direct blue dye 2 on coffee grounds in a laboratory scale fixed bed column, Revista UDCA Actualidad & Divulgación Científica, 21 (2018) 531–541.
  32. S. Azizian, Kinetic models of sorption: a theoretical analysis, J. Colloid Interface Sci., 276 (2004) 47–52.
  33. N.M. Mahmoodi, U. Sadeghi, A. Maleki, B. Hayati, F. Najafi, Synthesis of cationic polymeric adsorbent and dye removal isotherm, kinetic and thermodynamic, J. Ind. Eng. Chem., 20 (2014) 2745–2753.
  34. S.J. Allen, Q. Gan, R. Matthews, P.A. Johnson, Kinetic modeling of the adsorption of basic dyes by kudzu, J. Colloid Interface Sci., 286 (2005) 101–109.
  35. Y.S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., 136 (2006) 681–689.
  36. N. Yeddou, A. Bensmaili, Kinetic models for the sorption of dye from aqueous solution by clay-wood sawdust mixture, Desalination, 185 (2005) 499–508.
  37. Z. Aksu, U. Açikel, E. Kabasakal, S. Tezer, Equilibrium modelling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge, Water Res., 36 (2002) 3063–3073.
  38. P.C.C. Faria, J.J.M. Orfão, M.F.R. Pereira, Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries, Water Res., 38 (2004) 2043–2052.
  39. A. Ahmad, A. Idris, D.K. Mahmoud, Equilibrium modeling, kinetic and thermodynamic studies on the adsorption of basic dye by low-cost adsorbent, J. Adv. Res. Sci. Eng. Technol., 1 (2011) 261–277.
  40. Z. Aksu, A.İ. Tatlı, Ö. Tunç, A comparative adsorption/ biosorption study of Acid Blue 161: effect of temperature on equilibrium and kinetic parameters, Chem. Eng. J., 142 (2008) 23–39.
  41. J.C. Bellot, J.S. Condoret, Modelling of liquid chromatography equilibria, Process Biochem., 28 (1993) 365–376.
  42. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  43. R. Niwas, U. Gupta, A.A. Khan, K.G. Varshney, The adsorption of phosphamidon on the surface of styrene supported zirconium(IV) tungstophosphate: a thermodynamic study, Colloids Surf., A, 164 (2000) 115–119.
  44. J.W. Bigar, M.W. Cheung, Adsorption of picloram (4-amino- 3,5,6-trichloropicolinic acid) on panoche, ephrata, and palouse soils: a thermodynamic approach to the adsorption mechanism, Soil Sci. Soc. Am. J., 37 (1973) 863–868.
  45. S. Glasstone, Textbook of Physical Chemistry, Macmillan, 1951.
  46. A. Safa Özcan ,Ş. Tetik, A. Özcan, Adsorption of acid dyes from aqueous solutions onto sepiolite, Sep. Sci. Technol., 39 (2004) 301–320.
  47. A. Özcan, A.S. Özcan, Adsorption of Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite, J. Hazard. Mater., 125 (2005) 252–259.
  48. R.P. Han, J.J. Zhang, P. Han, Y.F. Wang, Z.H. Zhao, M.S. Tang, Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite, Chem. Eng. J., 145 (2009) 496–504.
  49. Y.S. Murillo, L. Giraldo, J.C. Moreno, Determinación de la cinética de adsorción de 2, 4-dinitrofenol en carbonizado de hueso bovino por espectrofotometría uv-vis, Rev. Colomb. de Química, 40 (2011) 91–103.
  50. A. Hashem, F. Ahmad, S.M. Badawy, Adsorption of direct green 26 onto fix 3500 treated sawdust: equilibrium, kinetic and isotherms, Desal. Water Treat., 57 (2016) 13334–13346.
  51. N.K. Amin, Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics, J. Hazard. Mater., 165 (2009) 52–62.
  52. F.-C. Wu, R.-L. Tseng, R.-S. Juang, Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems, Chem. Eng. J., 150 (2009) 366–373.
  53. D. Robati, Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multiwalled carbon nanotube, J. Nanostruct. Chem., 3 (2013) 55, doi: 10.1186/2193-8865-3-55.
  54. J. Mieczysław, A. Deryło, A. Marczewski, The Langmuir-Freundlich equation in adsorption from dilute solutions on solids, Monatsh. Chem., 114 (1983) 393–397.
  55. T.W. Weber, R.K. Chakravorti, Pore and solid diffusion models for fixed‐bed adsorbers, AIChE J., 20 (1974) 228–238.
  56. M. Gordon, Adsorption of dyestuffs from aqueous solutions with activated carbon I: equilibrium and batch contact‐time studies, J. Chem. Technol. Biotechnol., 32 (1982) 759–772.
  57. L.S. Tsui, W.R. Roy, M.A. Cole, Removal of dissolved textile dyes from wastewater by a compost sorbent, Color. Technol., 119 (2003) 14–18.
  58. F.D. Ardejani, K. Badii, N.Y. Limaee, S.Z. Shafaei, A.R. Mirhabibi, Adsorption of Direct Red 80 dye from aqueous solution onto almond shells: effect of pH, initial concentration and shell type, J. Hazard. Mater., 151 (2008) 730–737.
  59. M. Arami, N.Y. Limaee, N.M. Mahmoodi, N.S. Tabrizi, Removal of dyes from colored textile wastewater by orange peel adsorbent: equilibrium and kinetic studies, J. Colloid Interface Sci., 288 (2005) 371–376.
  60. M. Arami, N.Y. Limaee, N.M. Mahmoodi, N.S. Tabrizi, Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull, J. Hazard. Mater., 135 (2006) 171–179.
  61. C. Namasivayam, S. Sumithra, Removal of direct red 12B and methylene blue from water by adsorption onto Fe(III)/Cr(III) hydroxide, an industrial solid waste, J. Environ. Manage., 74 (2005) 207–215.
  62. A. El Nemr, O. Abdelwahab, A. El-Sikaily, A. Khaled, Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel, J. Hazard. Mater., 161 (2009) 102–110.
  63. A. Khaled, A. El Nemr, A. El-Sikaily, O. Abdelwahab, Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: adsorption isotherm and kinetic studies, J. Hazard. Mater., 165 (2009) 100–110.
  64. C. Namasivayam, D. Prabha, M. Kumutha, Removal of direct red and acid brilliant blue by adsorption on to banana pith, Bioresour. Technol., 64 (1998) 77–79.
  65. Y. Bulut, N. Gözübenli, H. Aydın, Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells, J. Hazard. Mater., 144 (2007) 300–306.
  66. M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: a review, J. Hazard. Mater., 177 (2010) 70–80.