References

  1. I.M. Farid, M.H.H. Abbas, M.A. Bassouny, A. Gameel, H.H. Abbas, Indirect impacts of irrigation with low-quality water on the environmental safety, Egypt. J. Soil Sci., 60 (2020) 1–15.
  2. R.W. Holloway, A. Achilli, T.Y. Cath, The osmotic membrane bioreactor: a critical review, Environ. Sci. Water Res. Technol., 1 (2015) 581–605.
  3. D. Norton-Brandão, S.M. Scherrenberg, J.B. van Lier, Reclamation of used urban waters for irrigation purposes – a review of treatment technologies, J. Environ. Manage., 122 (2013) 85–98.
  4. Z. Wang, J.S. Li, Y.F. Li, Using reclaimed water for agricultural and landscape irrigation in China: a review, Irrig. Drain., 66 (2017) 672–686.
  5. J.G. Liu, W. Yang, Water sustainability for China and beyond, Science, 337 (2012) 649–650.
  6. X.Q. Shi, R. Fang, J.C. Wu, H.X. Xu, Y.Y. Sun, J. Yu, Sustainable development and utilization of groundwater resources considering land subsidence in Suzhou, China, Eng. Geol., 124 (2012) 77–89.
  7. D. Schröter, W. Cramer, R. Leemans, I.C. Prentice, M.B. Araújo, N.W. Arnell, A. Bondeau, H. Bugmann, T.R. Carter, C.A. Gracia, A.C. de la Vega-Leinert, M. Erhard, F. Ewert, M. Glendining, J.I. House, S. Kankaanpää, R.J.T. Klein, S. Lavorel, M. Lindner, M.J. Metzger, J. Meyer, T.D. Mitchell, I. Reginster, M. Rounsevell, S. Sabaté, S. Sitch, B. Smith, J. Smith, P. Smith, M.T. Sykes, K. Thonicke, W. Thuiller, G. Tuck, S. Zaehle, B. Zierl, Ecosystem service supply and vulnerability to global change in Europe, Science, 310 (2005) 1333–1337.
  8. H. Zhang, G. Jin, Y. Yu, Review of river basin water resource management in China, Water, 10 (2018) 425, doi: 10.3390/w10040425.
  9. W. Li, T. Jain, K. Ishida, H.Z. Liu, A mechanistic understanding of the degradation of trace organic contaminants by UV/ hydrogen peroxide, UV/persulfate and UV/free chlorine for water reuse, Environ. Sci. Water Res. Technol., 3 (2017) 128–138.
  10. FAO, Municipal Wastewater, Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/ nr/water/aquastat/data/query/results.html?regionQuery=true& yearGrouping=SURVEY&showCodes=false&yearRange.from Year=1958&yearRange.toYear=2017&varGrpIds=4265% 2C4269%2C4270%2C4493&cntIds=®Ids=9805%2C9806% 2C9807%2C9808%2C9809&edit=0&save=0&query_type= WasteWpage&lowBandwidth=1&newestOnly=true&_newest Only=on&showValueYears=true&_showValueYears=on& categoryIds=1&_categoryIds=1&XAxis=VARIABLE&show Symbols=true&_showSymbols=on&_hideEmptyRows Coloumns=o n&lang=en, accessed January 10, 2019.
  11. Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD), The Statistical Yearbook Data of City Construction in 2016. Available at: http://www.mohurd.gov.cn/xytj/tjzljsxytjgb/index.html, accessed January 8, 2019.
  12. Ministry of Land, Infrastructure, Transport and Tourism, Water Resources in Japan. Available at: http://www.mlit.go.jp/mizukokudo/mizsei/mizukokudo_mizsei_fr2_000020.html, accessed January 15 2019.
  13. P.S. Goh, T. Matsuura, A.F. Ismail, N. Hilal, Recent trends in membranes and membrane processes for desalination, Desalination, 391 (2016) 43–60.
  14. N. Mohan, N. Balasubramanian, C.A. Basha, Electrochemical oxidation of textile wastewater and its reuse, J. Hazard. Mater., 147 (2007) 644–651.
  15. M.C.V.M. Starling, P.H.R. dos Santos, F.A.R. de Souza, S.C. Oliveira, M.M.D. Leao, C.C. Amorim, Application of solar photo-Fenton toward toxicity removal and textile wastewater reuse, Environ. Sci. Pollut. Res., 24 (2017) 12515–12528.
  16. E.M. Romero-Dondiz, J.E. Almazán, V.B. Rajal, E.F. Castro-Vidaurre, Comparison of the performance of ultrafiltration and nanofiltration membranes for recovery and recycle of tannins in the leather industry, J. Cleaner Prod., 135 (2016) 71–79.
  17. S. Munirasu, M. Abu Haija, F. Banat, Use of membrane technology for oil field and refinery produced water treatment— a review, Process Saf. Environ. Prot., 100 (2016) 183–202.
  18. USEPA, Guideline for Water Reuse, U.S. Environmental Protection Agency. Available at: https://nepis.epa.gov/Exe/ ZyPURL.cgi?Dockey=P100FS7K.txt, accessed January 13, 2019.
  19. Australian Bureau of Statistics, Water Account Australia. Available at: http://www.abs.gov.au/ausstats/abs@.nsf/Primary MainFeatures/4610.0?OpenDocument, accessed January 16, 2019.
  20. Water Reuse foundation, National Database of Water Reuse Facilities Summary Report. Available at: http://www.doc88. com/p-9079718140538.html, accessed January 20, 2019.
  21. S. Bunani, E. Yörükoğlu, G. Sert, N. Kabay, U. Yüksel, M. Yüksel, O. Egemen, T.O. Pek, Utilization of reverse osmosis (RO) for reuse of MBR-treated wastewater in irrigation-preliminary tests and quality analysis of product water, Environ. Sci. Pollut. Res., 25 (2018) 3030–3037.
  22. H.Y. Yuan, Z. He, Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: a review, Bioresour. Technol., 195 (2015) 202–209.
  23. D.T. Mai, C. Kunacheva, D.C. Stuckey, A review of posttreatment technologies for anaerobic effluents for discharge and recycling of wastewater, Crit. Rev. Env. Sci. Technol., 48 (2018) 167–209.
  24. G. Pérez, A.R. Fernández-Alba, A.M. Urtiaga, I. Ortiz, Electrooxidation of reverse osmosis concentrates generated in tertiary water treatment, Water Res., 44 (2010) 2763–2772.
  25. M.M. Luan, G.L. Jing, Y.J. Piao, D.B. Liu, L.F. Jin, Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation, Arabian J. Chem., 10 (2017) S769–S776.
  26. M.J. Gómez, M.J. Martínez Bueno, S. Lacorte, A.R. Fernández-Alba, A. Agüera, Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast, Chemosphere, 66 (2007) 993–1002.
  27. S.M. He, P.C. Luan, L.H. Mo, J. Xu, J. Li, L.Q. Zhu, J.S. Zeng, Mineralization of recalcitrant organic pollutants in pulp and paper mill wastewaters through ozonation catalyzed by Cu-Ce supported on Al2O3, BioResources, 13 (2018) 3686–3703.
  28. G.X. Sun, Y. Zhang, Y.X. Gao, X.G. Han, M. Yang, Removal of hard COD from biological effluent of coking wastewater using synchronized oxidation-adsorption technology: performance, mechanism, and full-scale application, Water Res., 173 (2020) 115517, doi: 10.1016/j.watres.2020.115517.
  29. J. Ge, B. Guha, L. Lippincott, S. Cach, J.S. Wei, T.-L. Su, X.G. Meng, Challenges of arsenic removal from municipal wastewater by coagulation with ferric chloride and alum, Sci. Total Environ., 725 (2020) 138351, doi: 10.1016/j.scitotenv.2020.138351.
  30. A. Mukherjee, A. Mullick, R. Teja, P. Vadthya, A. Roy, S. Moulik, Performance and energetic analysis of hydrodynamic cavitation and potential integration with existing advanced oxidation processes: a case study for real life greywater treatment, Ultrason. Sonochem., 66 (2020) 105116, doi: 10.1016/j.ultsonch. 2020.105116.
  31. D. Kang, K. Doudrick, N. Park, Y.H. Choi, K.Y. Kim, J.H. Jeon, Identification of transformation products to characterize the ability of a natural wetland to degrade synthetic organic pollutants, Water Res., 187 (2020) 116425, doi: 10.1016/j. watres.2020.116425.
  32. W.J. An, L.Y. Tian, J.S. Hu, L. Liu, W.Q. Cui, Y.H. Liang, Efficient degradation of organic pollutants by catalytic ozonation and photocatalysis synergy system using double-functional MgO/g-C3N4 catalyst, Appl. Surf. Sci., 534 (2020) 147518, doi: 10.1016/j.apsusc.2020.147518.
  33. T.D. Kusworo, N. Aryanti, Qudratun, D.P. Utomo, Oilfield produced water treatment to clean water using integrated activated carbon-bentonite adsorbent and double stages membrane process, Chem. Eng. J., 347 (2018) 462–471.
  34. E. Taheri, M.H. Khiadani, M.M. Amin, M. Nikaeen, A. Hassanzadeh, Treatment of saline wastewater by a sequencing batch reactor with emphasis on aerobic granule formation, Bioresour. Technol., 111 (2012) 21–26.
  35. A. Haddadi, M. Shavandi, Biodegradation of phenol in hypersaline conditions by Halomonas sp. strain PH2-2 isolated from saline soil, Int. Biodeterior. Biodegrad., 85 (2013) 29–34.
  36. H.F. Lu, G.M. Zhang, Y.F. Lu, Y.H. Zhang, B.M. Li, W. Cao, Using co-metabolism to accelerate synthetic starch wastewater degradation and nutrient recovery in photosynthetic bacterial wastewater treatment technology, Environ. Technol., 37 (2016) 775–784.
  37. F.Y. Ramírez-Castillo, A. Loera-Muro, M. Jacques, P. Garneau, F.J. Avelar-González, J. Harel, A.L. Guerrero-Barrera, Waterborne pathogens: detection methods and challenges, Pathogens, 4 (2015) 307–334.
  38. A. Sofo, A.N. Mininni, C. Fausto, M. Scagliola, C. Crecchio, C. Xiloyannis, B. Dichio, Evaluation of the possible persistence of potential human pathogenic bacteria in olive orchards irrigated with treated urban wastewater, Sci. Total Environ., 658 (2019) 763–767.
  39. M. Amarasiri, M. Kitajima, T.H. Nguyen, S. Okabe, D. Sano, Bacteriophage removal efficiency as a validation and operational monitoring tool for virus reduction in wastewater reclamation: review, Water Res., 121 (2017) 258–269.
  40. H. Alizade, S.H. Teshnizi, M. Azad, S. Shojae, H. Gouklani, P. Davoodian, R. Ghanbarpour, An overview of diarrheagenic Escherichia coli in Iran: a systematic review and meta-analysis, J. Res. Med. Sci., 24 (2019) 23, doi: 10.4103/jrms.JRMS_256_18.
  41. D. Sano, M. Amarasiri, A. Hata, T. Watanabe, H. Katayama, Risk management of viral infectious diseases in wastewater reclamation and reuse: review, Environ. Int., 91 (2016) 220–229.
  42. J. Behrsing, S. Winkler, P. Franz, R. Premier, Efficacy of chlorine for inactivation of Escherichia coli on vegetables, Postharvest Biol. Technol., 19 (2000) 187–192.
  43. A.M. Driedger, J.L. Rennecker, B.J. Mariñas, Sequential inactivation of Cryptosporidium parvum oocysts with ozone and free chlorine, Water Res., 34 (2000) 3591–3597.
  44. A.M. Gall, B.J. Mariñas, Y. Lu, J.L. Shisler, Waterborne viruses: a barrier to safe drinking water, PLoS Pathog., 11 (2015) e1004867, doi: 10.1371/journal.ppat.1004867.
  45. M.D. Sobsey, Inactivation of health-related microorganisms in water by disinfection processes, Water Sci. Technol., 21 (1989) 179–195.
  46. X.P. Gai, H.B. Liu, J. Liu, L.M. Zhai, H.Y. Wang, B. Yang, T.Z. Ren, S.X. Wu, Q.L. Lei, Contrasting impacts of long-term application of manure and crop straw on residual nitrate-N along the soil profile in the North China Plain, Sci. Total Environ., 650 (2019) 2251–2259.
  47. Z.Q. Zhao, W. Qin, Z.H. Bai, L. Ma, Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China, Agric. Water Manage., 212 (2019) 262–272.
  48. S. Payen, S.F. Ledgard, Aquatic eutrophication indicators in LCA: methodological challenges illustrated using a case study in New Zealand, J. Cleaner Prod., 168 (2017) 1463–1472.
  49. B.S. Herath, A. Torres, A. Sathasivan, Effects of feed water NOM variation on chloramine demand from chloraminedecaying soluble microbial products during rechloramination, Chemosphere, 212 (2018) 744–754.
  50. S.Y. Wang, Y.Z. Peng, B. Ma, S.Y. Wang, G.B. Zhu, Anaerobic ammonium oxidation in traditional municipal wastewater treatment plants with low-strength ammonium loading: widespread but overlooked, Water Res., 84 (2015) 66–75.
  51. Z.B. Yao, P.L. Lu, D.J. Zhang, X.Y. Wan, Y.L. Li, S.C. Peng, Stoichiometry and kinetics of the anaerobic ammonium oxidation (Anammox) with trace hydrazine addition, Bioresour. Technol., 198 (2015) 70–76.
  52. J.M. Kim, H.J. Lee, D.S. Lee, C.O. Jeon, Characterization of the denitrification-associated phosphorus uptake properties of “Candidatus Accumulibacter phosphatis” clades in sludge subjected to enhanced biological phosphorus removal, Appl. Environ. Microbiol., 79 (2013) 1969–1979.
  53. X. Wen, J. Zhou, Y.C. Li, X.X. Qing, Q. He, A novel process combining simultaneous partial nitrification, anammox and denitrification (SNAD) with denitrifying phosphorus removal (DPR) to treat sewage, Bioresour. Technol., 222 (2016) 309–316.
  54. K. Zhou, B.R. Wu, L.G. Su, X.F. Gao, X.L. Chai, X.H. Dai, Development of nano-CaO2-coated clinoptilolite for enhanced phosphorus adsorption and simultaneous removal of COD and nitrogen from sewage, Chem. Eng. J., 328 (2017) 35–43.
  55. D.D. Nguyen, Y.S. Yoon, X.T. Bui, S.S. Kim, S.W. Chang, W.S. Guo, H.H. Ngo, Influences of operational parameters on phosphorus removal in batch and continuous electrocoagulation process performance, Environ. Sci. Pollut. Res., 24 (2017) 25441–25451.
  56. X.L. Chen, X. Cheng, B. Chen, D.Z. Sun, W.F. Ma, X.Z. Wang, Phosphorus precipitation in septic systems induced by iron reduction: a process for phosphorus removal under anaerobic conditions, Desal. Water Treat., 54 (2015) 2891–2901.
  57. A. Anglada, A. Urtiaga, I. Ortiz, Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications, J. Chem. Technol. Biotechnol., 84 (2009) 1747–1755.
  58. J.G. Jacangelo, R.R. Trussell, M. Watson, Role of membrane technology in drinking water treatment in the United States, Desalination, 113 (1997) 119–127.
  59. S. Purnell, J. Ebdon, A. Buck, M. Tupper, H. Taylor, Removal of phages and viral pathogens in a full-scale MBR: implications for wastewater reuse and potable water, Water Res., 100 (2016) 20–27.
  60. A.K.Y. Walker, Blood microfiltration – review, Anaesthesia, 33 (1978) 35–40.
  61. Y.B. Lu, Z. He, Mitigation of salinity buildup and recovery of wasted salts in a hybrid osmotic membrane bioreactorelectrodialysis system, Environ. Sci. Technol., 49 (2015) 10529–10535.
  62. H. Strathmann, Electrodialysis, a mature technology with a multitude of new applications, Desalination, 264 (2010) 268–288.
  63. M. Hirose, Y. Minamizaki, Y. Kamiyama, The relationship between polymer molecular structure of RO membrane skin layers and their RO performances, J. Membr. Sci., 123 (1997) 151–156.
  64. I.G. Wenten, Khoiruddin, Reverse osmosis applications: prospect and challenges, Desalination, 391 (2016) 112–125.
  65. T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281 (2006) 70–87.
  66. S.F. Zhao, L. Zou, C.Y.Y. Tang, D. Mulcahy, Recent developments in forward osmosis: opportunities and challenges, J. Membr. Sci., 396 (2012) 1–21.
  67. D.L. Oatley-Radcliffe, M. Walters, T.J. Ainscough, P.M. Williams, A.W. Mohammad, N. Hilal, Nanofiltration membranes and processes: a review of research trends over the past decade, J. Water Process Eng., 19 (2017) 164–171.
  68. G.Z. Feng, H.Q. Chu, B.Z. Dong, Characterizing dissolved organic matter fouling of nanofiltration membranes and evaluating effects of naproxen retention, Desal. Water Treat., 56 (2015) 2835–2847.
  69. G. Balcıoğlu, Z.B. Gönder, Recovery of baker’s yeast wastewater with membrane processes for agricultural irrigation purpose: fouling characterization, Chem. Eng. J., 255 (2014) 630–640.
  70. D.M. Warsinger, S. Chakraborty, E.W. Tow, M.H. Plumlee, C. Bellona, S. Loutatidou, L. Karimi, A.M. Mikelonis, A. Achilli, A. Ghassemi, L.P. Padhye, S.A. Snyder, S. Curcio, C.D. Vecitis, H.A. Arafat, J.H. Lienhard V, A review of polymeric membranes and processes for potable water reuse, Prog. Polym. Sci., 81 (2018) 209–237.
  71. G. Matar, G. Gonzalez-Gil, H. Maab, S. Nunes, P. Le-Clech, J. Vrouwenvelder, P.E. Saikaly, Temporal changes in extracellular polymeric substances on hydrophobic and hydrophilic membrane surfaces in a submerged membrane bioreactor, Water Res., 95 (2016) 27–38.
  72. A.G. Fane, R. Wang, M.X. Hu, Synthetic membranes for water purification: status and future, Angew. Chem. Int. Ed., 54 (2015) 3368–3386.
  73. G. Han, S. Zhang, X. Li, N. Widjojo, T.-S. Chung, Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection, Chem. Eng. Sci., 80 (2012) 219–231.
  74. S. Basu, M. Balakrishnan, Polyamide thin film composite membranes containing ZIF-8 for the separation of pharmaceutical compounds from aqueous streams, Sep. Purif. Technol., 179 (2017) 118–125.
  75. B.X. Zhang, X.Y. Song, L.D. Nghiem, G.X. Li, W.H. Luo, Osmotic membrane bioreactors for wastewater reuse: performance comparison between cellulose triacetate and polyamide thin film composite membranes, J. Membr. Sci., 539 (2017) 383–391.
  76. C.Q. Zhao, X.C. Xu, J. Chen, G.W. Wang, F.L. Yang, Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system, Desalination, 340 (2014) 59–66.
  77. J. Mulopo, Bleach plant effluent treatment in anaerobic membrane bioreactor (AMBR) using carbon nanotube/ polysulfone nanocomposite membranes, J. Environ. Chem. Eng., 5 (2017) 4381–4387.
  78. J.L. Lv, G.Q. Zhang, H.M. Zhang, F.L. Yang, Graphene oxidecellulose nanocrystal (GO-CNC) composite functionalized PVDF membrane with improved antifouling performance in MBR: behavior and mechanism, Chem. Eng. J., 352 (2018) 765–773.
  79. F. Gholami, S. Zinadini, A.A. Zinatizadeh, E. Noori, E. Rafiee, Preparation and characterization of an antifouling polyethersulfone nanofiltration membrane blended with graphene oxide/Ag nanoparticles, Int. J. Eng.-Iran, 30 (2017) 1425–1433.
  80. C. Song, C.M. Yang, X.F. Sun, P.F. Xia, J. Qin, B.B. Guo, S.G. Wang, Influences of graphene oxide on biofilm formation of gram-negative and gram-positive bacteria, Environ. Sci. Pollut. Res., 25 (2018) 2853–2860.
  81. J. Lee, H.-R. Chae, Y.J. Won, K. Lee, C.-H. Lee, H.H. Lee, I.-C. Kim, J.-M. Lee, Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment, J. Membr. Sci., 448 (2013) 223–230.
  82. H.Y. Liu, G.Q. Zhang, C.Q. Zhao, J.D. Liu, F.L. Yang, Hydraulic power and electric field combined antifouling effect of a novel conductive poly(aminoanthraquinone)/reduced graphene oxide nanohybrid blended PVDF ultrafiltration membrane, J. Mater. Chem. A, 3 (2015) 20277–20287.
  83. D.J. Miller, P.A. Araújo, P.B. Correia, M.M. Ramsey, J.C. Kruithof, M.C.M. van Loosdrecht, B.D. Freeman, D.R. Paul, M. Whiteley, J.S. Vrouwenvelder, Short-term adhesion and longterm biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control, Water Res., 46 (2012) 3737–3753.
  84. H.-C. Yang, K.-J. Liao, H. Huang, Q.-Y. Wu, L.-S. Wan, Z.-K. Xu, Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation, J. Mater. Chem. A, 2 (2014) 10225–10230.
  85. N. Shahkaramipour, S.N. Ramanan, D. Fister, E. Park, S.R. Venna, H.T. Sun, C. Cheng, H.Q. Lin, Facile grafting of zwitterions onto the membrane surface to enhance antifouling properties for wastewater reuse, Ind. Eng. Chem. Res., 56 (2017) 9202–9212.
  86. Y.Z. Song, X. Kong, X. Yin, Y. Zhang, C.C. Sun, J.J. Yuan, B.K. Zhu, L.P. Zhu, Tannin-inspired superhydrophilic and underwater superoleophobic polypropylene membrane for effective oil/water emulsions separation, Colloids Surf., A, 522 (2017) 585–592.
  87. A. Antony, N. Subhi, R.K. Henderson, S.J. Khan, R.M. Stuetz, P. Le-Clech, V. Chen, G. Leslie, Comparison of reverse osmosis membrane fouling profiles from Australian water recycling plants, J. Membr. Sci., 407 (2012) 8–16.
  88. H.C. Flemming, Role and levels of real-time monitoring for successful anti-fouling strategies – an overview, Water Sci. Technol., 47 (2003) 1–8.
  89. Y. Xiao, T. Chen, Y.J. Hu, D.S. Wang, Y.P. Han, Y.K. Lin, X.L. Wang, Advanced treatment of semiconductor wastewater by combined MBR-RO technology, Desalination, 336 (2014) 168–178.
  90. R.A. Maltos, J. Regnery, N. Almaraz, S. Fox, M. Schutter, T.J. Cath, M. Veres, B.D. Coday, T.Y. Cath, Produced water impact on membrane integrity during extended pilot testing of forward osmosis – reverse osmosis treatment, Desalination, 440 (2018) 99–110.
  91. X.Y. Guo, H.Q. Shao, W.L. Hu, W. Gao, X. Chen, Tannin and polyacrylic acid polarity and structure influence on the performance of polyvinylchloride ultrafiltration membrane, Desalination, 250 (2010) 740–744.
  92. R.V. Linares, Z.Y. Li, V. Yangali-Quintanilla, Q.Y. Li, J.S. Vrouwenvelder, G.L. Amy, N. Ghaffour, Hybrid SBR-FO system for wastewater treatment and reuse: operation, fouling and cleaning, Desalination, 393 (2016) 31–38.
  93. K.E. Bouhidel, M. Rumeau, Ion-exchange membrane fouling by boric acid in the electrodialysis of nickel electroplating rinsing waters: generalization of our results, Desalination, 167 (2004) 301–310.
  94. T. Scarazzato, Z. Panossian, J.A.S. Tenório, V. Pérez- Herranz, D.C.R. Espinosa, A review of cleaner production in electroplating industries using electrodialysis, J. Cleaner Prod., 168 (2017) 1590–1602.
  95. M. Qasim, N.N. Darwish, S. Mhiyo, N.A. Darwish, N. Hilal, The use of ultrasound to mitigate membrane fouling in desalination and water treatment, Desalination, 443 (2018) 143–164.
  96. B.C. Huang, Y.F. Guan, W. Chen, H.Q. Yu, Membrane fouling characteristics and mitigation in a coagulationassisted microfiltration process for municipal wastewater pretreatment, Water Res., 123 (2017) 216–223.
  97. Y. Yu, C.W. Zhao, L. Yu, P. Li, T. Wang, Y. Xu, Removal of perfluorooctane sulfonates from water by a hybrid coagulation- nanofiltration process, Chem. Eng. J., 289 (2016) 7–16.
  98. W.H. Luo, H.V. Phan, M. Xie, F.I. Hai, W.E. Price, M. Elimelech, L.D. Nghiem, Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: biological stability, membrane fouling, and contaminant removal, Water Res., 109 (2017) 122–134.
  99. B.W. Su, T. Wu, Z.C. Li, X. Cong, X.L. Gao, C.J. Gao, Pilot study of seawater nanofiltration softening technology based on integrated membrane system, Desalination, 368 (2015) 193–201.
  100. X.Y. Song, W.H. Luo, J. McDonald, S.J. Khan, F.I. Hai, W.E. Price, L.D. Nghiem, An anaerobic membrane bioreactor - membrane distillation hybrid system for energy recovery and water reuse: removal performance of organic carbon, nutrients, and trace organic contaminants, Sci. Total Environ., 628–629 (2018) 358–365.
  101. L. Wang, W.Z. Liang, W.S. Chen, W.X. Zhang, J.H. Mo, K.G. Liang, B. Tang, Y. Zheng, F. Jiang, Integrated aerobic granular sludge and membrane process for enabling municipal wastewater treatment and reuse water production, Chem,. Eng. J., 337 (2018) 300–311.
  102. N. Tadkaew, F.I. Hai, J.A. McDonald, S.J. Khan, L.D. Nghiem, Removal of trace organics by MBR treatment: the role of molecular properties, Water Res., 45 (2011) 2439–2451.
  103. J. Mamo, M.J. Garcia-Galan, M. Stefani, S. Rodriguez-Mozaz, D. Barcelo, H. Monclus, I. Rodriguez-Roda, J. Comas, Fate of pharmaceuticals and their transformation products in integrated membrane systems for wastewater reclamation, Chem. Eng. J., 331 (2018) 450–461.
  104. S.P. Sun, T.A. Hatton, T.S. Chung, Hyperbranched polyethyleneimine induced cross-linking of polyamideimide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin, Environ. Sci. Technol., 45 (2011) 4003–4009.
  105. H.C. Kim, J. Shin, S. Won, J.Y. Lee, S.K. Maeng, K.G. Song, Membrane distillation combined with an anaerobic moving bed biofilm reactor for treating municipal wastewater, Water Res., 71 (2015) 97–106.
  106. N.C. Nguyen, H.T. Nguyen, S.S. Chen, H.H. Ngo, W.S. Guo, W.H. Chan, S.S. Ray, C.W. Li, H.T. Hsu, A novel osmosis membrane bioreactor-membrane distillation hybrid system for wastewater treatment and reuse, Bioresour. Technol., 209 (2016) 8–15.
  107. Y. Gao, D.F. Ma, Q.Y. Yue, B.Y. Gao, X. Huang, Effect of powdered activated carbon (PAC) on MBR performance and effluent trihalomethane formation: at the initial stage of PAC addition, Bioresour. Technol., 216 (2016) 838–844.
  108. F. Zanetti, G. De Luca, R. Sacchetti, Performance of a fullscale membrane bioreactor system in treating municipal wastewater for reuse purposes, Bioresour. Technol., 101 (2010) 3768–3771.
  109. A.K. da Silva, J.C. Le Saux, S. Parnaudeau, M. Pommepuy, M. Elimelech, F.S. Le Guyader, Evaluation of removal of noroviruses during wastewater treatment, using real-time reverse transcription-PCR: different behaviors of genogroups I and II, Appl. Environ. Microbiol., 73 (2007) 7891–7897.
  110. R.M. Chaudhry, K.L. Nelson, J.E. Drewes, Mechanisms of pathogenic virus removal in a full-scale membrane bioreactor, Environ. Sci. Technol., 49 (2015) 2815–2822.
  111. D.H.W. Kuo, F.J. Simmons, S. Blair, E. Hart, J.B. Rose, I. Xagoraraki, Assessment of human adenovirus removal in a full-scale membrane bioreactor treating municipal wastewater, Water Res., 44 (2010) 1520–1530.
  112. F.J. Simmons, D.H.W. Kuo, I. Xagoraraki, Removal of human enteric viruses by a full-scale membrane bioreactor during municipal wastewater processing, Water Res., 45 (2011) 2739–2750.
  113. F.J. Simmons, I. Xagoraraki, Release of infectious human enteric viruses by full-scale wastewater utilities, Water Res., 45 (2011) 3590–3598.
  114. W. Lv, X. Zheng, M. Yang, Y. Zhang, Y. Liu, J.X. Liu, Virus removal performance and mechanism of a submerged membrane bioreactor, Process Biochem., 41 (2006) 299–304.
  115. K. Lee, S. Lee, S.H. Lee, S.R. Kim, H.S. Oh, P.K. Park, K.H. Choo, Y.W. Kim, J.K. Lee, C.H. Lee, Fungal quorum quenching: a paradigm shift for energy savings in membrane bioreactor (MBR) for wastewater treatment, Environ. Sci. Technol., 50 (2016) 10914–10922.
  116. Y.L. Yang, X.L. Yang, Z. He, Bioelectrochemically-assisted mitigation of salinity buildup and recovery of reverse-fluxed draw solute in an osmotic membrane bioreactor, Water Res., 141 (2018) 259–267.
  117. R. Fox, D.C. Stuckey, MS-2 and T4 phage removal in an anaerobic membrane bioreactor (AnMBR): effect of gas sparging rate, J. Chem. Technol. Biotechnol., 90 (2015) 384–390.
  118. S. Yao, L.P. Chen, D.T. Guan, Z.G. Zhang, X.J. Tian, A.M. Wang, G.T. Wang, Q. Yao, D. Peng, J.Y. Li, On-site nutrient recovery and removal from source-separated urine by phosphorus precipitation and short-cut nitrification-denitrification, Chemosphere, 175 (2017) 210–218.
  119. B.K. Mutlu, H. Ozgun, M.E. Ersahin, R. Kaya, S. Eliduzgun, M. Altinbas, C. Kinaci, I. Koyuncu, Impact of salinity on the population dynamics of microorganisms in a membrane bioreactor treating produced water, Sci. Total. Environ., 646 (2019) 1080–1089.
  120. P.B. Moser, B.C. Ricci, B.G. Reis, L.S.F. Neta, A.C. Cerqueira, M.C.S. Amaral, Effect of MBR-H2O2/UV hybrid pretreatment on nanofiltration performance for the treatment of petroleum refinery wastewater, Sep. Purif. Technol., 192 (2018) 176–184.
  121. S.J. Khan, M.S. Siddique, H.M.A. Shahzad, Performance evaluation of hybrid OMBR-MD using organic and inorganic draw solutions, Water Sci. Technol. 78 (2018) 776–785.
  122. S. Alimoradi, R. Faraj, A. Torabian, Effects of residual aluminum on hybrid membrane bioreactor (coagulation-MBR) performance, treating dairy wastewater, Chem. Eng. Process., 133 (2018) 320–324.
  123. G. Blandin, C. Gautier, M.S. Toran, H. Monclús, I. Rodriguez-Roda, J. Comas, Retrofitting membrane bioreactor (MBR) into osmotic membrane bioreactor (OMBR): a pilot scale study, Chem. Eng. J., 339 (2018) 268–277.
  124. J. Mamo, S. Insa, H. Monclús, I. Rodriguez-Roda, J. Comas, D. Barcelo, M.J. Farre, Fate of NDMA precursors through an MBR-NF pilot plant for urban wastewater reclamation and the effect of changing aeration conditions, Water Res., 102 (2016) 383–393.
  125. X.Y.Y. Ma, Q.Y. Li, X.C. Wang, Y.K. Wang, D.H. Wang, H.H. Ngo, Micropollutants removal and health risk reduction in a water reclamation and ecological reuse system, Water Res., 138 (2018) 272–281.
  126. T. Niwa, M. Hatamoto, T. Yamashita, H. Noguchi, O. Takase, K.A. Kekre, W.S. Ang, G. Tao, H. Seah, T. Yamaguchi, Demonstration of a full-scale plant using an UASB followed by a ceramic MBR for the reclamation of industrial wastewater, Bioresour. Technol., 218 (2016) 1–8.
  127. S.H. Chong, T.K. Sen, A. Kayaalp, H.M. Ang, The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment - a state-of-the-art review, Water Res., 46 (2012) 3434–3470.
  128. I. Zucker, H. Mamane, H. Cikurel, M. Jekel, U. Hubner, D. Avisar, A hybrid process of biofiltration of secondary effluent followed by zonation and short soil aquifer treatment for water reuse, Water Res., 84 (2015) 315–322.
  129. L.G.M. Silva, F.C. Moreira, A.A.U. Souza, S.M.A.G.U. Souza, R.A.R. Boaventura, V.J.P. Vilar, Chemical and electrochemical advanced oxidation processes as a polishing step for textile wastewater treatment: a study regarding the discharge into the environment and the reuse in the textile industry, J. Cleaner Prod., 198 (2018) 430–442.
  130. M.Q. Cai, Y.Z. Zhu, Z.S. Wei, J.Q. Hu, S.D. Pan, R.Y. Xiao, C.Y. Dong, M.C. Jin, Rapid decolorization of dye Orange G by microwave enhanced Fenton-like reaction with delafossitetype CuFeO2, Sci. Total Environ., 580 (2017) 966–973.
  131. R.F.N. Quadrado, A.R. Fajardo, Fast decolorization of azo methyl orange via heterogeneous Fenton and Fenton-like reactions using alginate-Fe2+/Fe3+ films as catalysts, Carbohydr. Polym., 177 (2017) 443–450.
  132. Z.Q. Cao, X.H. Zheng, H.B. Cao, H. Zhao, Z. Sun, Z. Guo, K. Wang, B. Zhou, Efficient reuse of anode scrap from lithium-ion batteries as cathode for pollutant degradation in electro-Fenton process: role of different recovery processes, Chem. Eng. J., 337 (2018) 256–264.
  133. M. Agullo-Barcelo, M.I. Polo-Lopez, F. Lucena, J. Jofre, P. Fernandez-Ibanez, Solar advanced oxidation processes as disinfection tertiary treatments for real wastewater: implications for water reclamation, Appl. Catal., B, 136 (2013) 341–350.
  134. C.D. Qi, G. Yu, J. Huang, B. Wang, Y.J. Wang, S.B. Deng, Activation of persulfate by modified drinking water treatment residuals for sulfamethoxazole degradation, Chem. Eng. J., 353 (2018) 490–498.
  135. Y.G. Kang, H.C. Vu, T.T. Le, Y.S. Chang, Activation of persulfate by a novel Fe(II)-immobilized chitosan/alginate composite for bisphenol A degradation, Chem. Eng. J., 353 (2018) 736–745.
  136. R. Gonzalez-Olmos, A. Penades, G. Garcia, Electro-oxidation as efficient pretreatment to minimize the membrane fouling in water reuse processes, J. Membr. Sci., 552 (2018) 124–131.
  137. T. Fujioka, S. Masaki, H. Kodamatani, K. Ikehata, Degradation of N-nitrosodimethylamine by UV-based advanced oxidation processes for potable reuse: a short review, Curr. Pollut. Rep., 3 (2017) 79–87.
  138. L. Bilinska, M. Gmurek, S. Ledakowicz, Textile wastewater treatment by AOPs for brine reuse, Process Saf. Environ. Prot., 109 (2017) 420–428.
  139. M.C.M. Ribeiro, M.C.V.M. Starling, M.M.D. Leao, C.C. de Amorim, Textile wastewater reuse after additional treatment by Fenton’s reagent, Environ. Sci. Pollut. Res., 24 (2017) 6165–6175.
  140. Y.Y. Zhang, Y. Zhuang, J.J. Geng, H.Q. Ren, K. Xu, L.L. Ding, Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes, Sci. Total Environ., 550 (2016) 184–191.
  141. V. Diaz, R. Ibanez, P. Gomez, A.M. Urtiaga, I. Ortiz, Kinetics of electro-oxidation of ammonia-N, nitrites and COD from a recirculating aquaculture saline water system using BDD anodes, Water Res., 45 (2011) 125–134.
  142. R.Y. Zhu, C.Y. Yang, M.M. Zhou, J.D. Wang, Industrial park wastewater deeply treated and reused by a novel electrochemical oxidation reactor, Chem. Eng. J., 260 (2015) 427–433.
  143. K. Kazdobin, N. Shvab, S. Tsapakh, Scaling-up of fluidizedbed electrochemical reactors, Chem. Eng. J., 79 (2000) 203–209.
  144. A. Cano, P. Canizares, C. Barrera, C. Saez, M.A. Rodrigo, Use of low current densities in electrolyses with conductivediamond electrochemical – oxidation to disinfect treated wastewaters for reuse, Electrochem. Commun., 13 (2011) 1268–1270.
  145. E. Lacasa, E. Tsolaki, Z. Sbokou, M.A. Rodrigo, D. Mantzavinos, E. Diamadopoulos, Electrochemical disinfection of simulated ballast water on conductive diamond electrodes, Chem. Eng. J., 223 (2013) 516–523.
  146. M. Saracino, L. Pretali, M.L. Capobianco, S.S. Emmi, M.L. Navacchia, F. Bezzi, C. Mingazzini, E. Burresi, A. Zanelli, Titania nano-coated quartz wool for the photocatalytic mineralisation of emerging organic contaminants, Water Sci. Technol., 77 (2018) 409–416.
  147. M. Tammaro, V. Fiandra, M.C. Mascolo, A. Salluzzo, C. Riccio, A. Lancia, Photocatalytic degradation of atenolol in aqueous suspension of new recyclable catalysts based on titanium dioxide, J. Environ. Chem. Eng., 5 (2017) 3224–3234.
  148. V. Vaiano, M. Matarangolo, O. Sacco, UV-LEDs floating-bed photoreactor for the removal of caffeine and paracetamol using ZnO supported on polystyrene pellets, Chem. Eng. J., 350 (2018) 703–713.
  149. L.M.B. Batista, A.J. dos Santos, D.R. da Silva, A.P.D. Alves, S. Garcia-Segura, C.A. Martinez-Huitle, Solar photocatalytic application of NbO2OH as alternative photocatalyst for water treatment, Sci. Total Environ., 596 (2017) 79–86.
  150. J. Choi, J. Chung, Reuse of semiconductor wastewater using reverse osmosis and metal-immobilized catalyst-based advanced oxidation process, Ind. Eng. Chem. Res., 53 (2014) 11167–11175.
  151. K.V. Lo, I. Tunile, H.J. Tan, T. Burton, T. Kang, A. Srinivasan, P.H. Liao, Microwave enhanced advanced oxidation treatment of sewage sludge from the membrane-enhanced biological phosphorus removal process, Sep. Purif. Technol., 197 (2018) 202–209.
  152. A. Ruiz-Aguirre, M.I. Polo-Lopez, P. Fernandez-Ibanez, G. Zaragoza, Integration of membrane distillation with solar photo-Fenton for purification of water contaminated with Bacillus sp. and Clostridium sp. spores, Sci. Total Environ., 595 (2017) 110–118.
  153. J.J. Rueda-Marquez, M. Sillanpaa, P. Pocostales, A. Acevedo, M.A. Manzano, Post-treatment of biologically treated wastewater containing organic contaminants using a sequence of H2O2 based advanced oxidation processes: photolysis and catalytic wet oxidation, Water Res., 71 (2015) 85–96.
  154. J.O. Tijani, O.O. Fatoba, G. Madzivire, L.F. Petrik, A review of combined advanced oxidation technologies for the removal of organic pollutants from water, Water Air Soil Pollut., 225 (2014) 2102, doi: 10.1007/s11270-014-2102-y.
  155. S. Miralles-Cuevas, F. Audino, I. Oller, R. Sanchez-Moreno, J.A.S. Perez, S. Malato, Pharmaceuticals removal from natural water by nanofiltration combined with advanced tertiary treatments (solar photo-Fenton, photo-Fenton-like Fe(III)-EDDS complex and ozonation), Sep. Purif. Technol., 122 (2014) 515–522.
  156. S. Patton, M. Romano, V. Naddeo, K.P. Ishida, H.Z. Liu, Photolysis of mono- and dichloramines in UV/hydrogen peroxide: effects on 1,4-dioxane removal and relevance in water reuse, Environ. Sci. Technol., 52 (2018) 11720–11727.
  157. A. Lakretz, H. Mamane, E. Asa, T. Harif, M. Herzberg, Biofouling control by UV/H2O2 pretreatment for brackish water reverse osmosis process, Environ. Sci. Water Res., 4 (2018) 1331–1344.
  158. W.H. Sun, J. Chen, L.J. Chen, J.L. Wang, Y.M. Zhang, Coupled electron beam radiation and MBR treatment of textile wastewater containing polyvinyl alcohol, Chemosphere, 155 (2016) 57–61.
  159. E.C. Wert, F.L. Rosario-Ortiz, D.D. Drury, S.A. Snyder, Formation of oxidation byproducts from ozonation of wastewater, Water Res., 41 (2007) 1481–1490.
  160. U. Pinkernell, U. von Gunten, Bromate minimization during ozonation: mechanistic considerations, Environ. Sci. Technol., 35 (2001) 2525–2531.
  161. A. Turolla, M. Cattaneo, F. Marazzi, V. Mezzanotte, M. Antonelli, Antibiotic resistant bacteria in urban sewage: role of full-scale wastewater treatment plants on environmental spreading, Chemosphere, 191 (2018) 761–769.
  162. W.H. Chu, N.Y. Gao, D.Q. Yin, Y. Deng, M.R. Templeton, Ozone-biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products, Chemosphere, 86 (2012) 1087–1091.
  163. D. Gerrity, A.N. Pisarenko, E. Marti, R.A. Trenholm, F. Gerringer, J. Reungoat, E. Dickenson, Nitrosamines in pilot-scale and full-scale wastewater treatment plants with ozonation, Water Res., 72 (2015) 251–261.
  164. S.K. Stylianou, I.A. Katsoyiannis, M. Mitrakas, A.I. Zouboulis, Application of a ceramic membrane contacting process for ozone and peroxone treatment of micropollutant contaminated surface water, J. Hazard. Mater., 358 (2018) 129–135.
  165. L.L.S. Silva, J.C.S. Sales, J.C. Campos, D.M. Bila, F.V. Fonseca, Advanced oxidative processes and membrane separation for micropollutant removal from biotreated domestic wastewater, Environ. Sci. Pollut. Res., 24 (2017) 6329–6338.
  166. R.W. Holloway, L. Miller-Robbie, M. Patel, J.R. Stokes, J. Munakata-Marr, J. Dadakis, T.Y. Cath, Life-cycle assessment of two potable water reuse technologies: MF/RO/UV-AOP treatment and hybrid osmotic membrane bioreactors, J. Membr. Sci., 507 (2016) 165–178.
  167. Y.H. Chuang, S. Chen, C.J. Chinn, W.A. Mitch, Comparing the UV/monochloramine and UV/free chlorine advanced oxidation processes (AOPs) to the UV/hydrogen peroxide AOP under scenarios relevant to potable reuse, Environ. Sci. Technol., 51 (2017) 13859–13868.