References

  1. G. Agegnehu, A.K. Srivastava, K.I. Bird, The role of biochar and biochar-compost in improving soli quality and crop performance: a review, Appl. Soil Ecol., 119 (2017) 156–170.
  2. B. Zhao, D. O’Connor, J. Zhang, T. Peng, Z. Shen, D.C.W. Tsang, D. Hou, Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar, J. Cleaner Prod., 174(2018) 977–987.
  3. S.D. Ferreira, C. Manera, W.P. Silvestre, G.F. Pauletti, C.R. Altafini, M. Godinho, Use of biochar produced from elephant grass by pyrolysis in a screw reactor as a soil amendment, Waste Biomass Valor., 10 (2019) 3089–3100.
  4. Z. Zhang, Effects of biochar amendment on bacterial and fungal diversity for co-composting of gelatin industry sludge mixed with organic fraction of municipal solid waste, Bioresour. Technol., 246 (2017) 214–223.
  5. W. Czekała, A. Jeżowska, D. Chełkowski, The use of biochar for the production of organic fertilizers, J. Ecol. Eng., 20 (2019) 1–8.
  6. P. Oleszczuk, M. Rycaj, J. Lehmann, G. Cornelissen, Influence of activated carbon and biochar on phytotoxicity of air-dried sewage sludge to Lepidium sativum, Ecotoxicol. Environ., 80 (2012) 321–326.
  7. M. Uchimiya, S. Chang, K.T. Klasson, Screening biochars for heavy metal retention in soil: role of oxygen functional groups, J. Hazard. Mater., 190 (2011) 432–441.
  8. E.F. Zama, Y.-G. Zhu, B.J. Reid, G.-X. Sun, The role of biochar properties in influencing the sorption and desorption of Pb(II), Cd(II) and As(III) in aqueous solution, J. Cleaner Prod., 148 (2017) 127–136.
  9. H. Zhou, H. Meng, L. Zhao, Y. Shen, Y. Hou, H. Cheng, L. Song, Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting, Bioresour. Technol., 258 (2018) 279–286.
  10. B. Zhao, R. Xu, F. Ma, Y. Li, L. Wang, Effects of biochar derived from chicken manure and rape straw on speciation and phytoavailability of Cd to maize in artificially contaminated loess soil, J. Environ. Manage., 184 (2016) 569–574.
  11. E. Agyarko-Mintah, A. Cowie, B.P. Singh, S. Joseph, L. Van Zwieten, A. Cowie, S. Harden, R. Smillie, Biochar increase nitrogen retention and lowers greenhouse gas emission when added to composting poultry litter, Waste Manage., 61 (2017) 138–149.
  12. Q. Wang, W. Wei, Y. Gond, Q. Yu, Q. Li, J. Sun, Z. Yuan, Technologies for reducing sludge production in wastewater treatment plants: state of the art, Sci. Total Environ., 587–588 (2017) 510–521.
  13. S. Mia, M.E. Uddin, M.A. Kader, A. Ahsan, M.A. Mannan, M.M. Hossain, Z.M. Solaiman, Pyrolysis and co-composting of municipal organic waste in Bangladesh: a quantitative estimate of recyclable nutrients, greenhouse gas emissions, and economic benefits, Waste Manage., 75 (2018) 503–513.
  14. Q. Wang, M.K. Awasthi, X. Ren, J. Zhao, R. Li, Z. Wang, M. Wang, H. Chen, Z. Zhang, Combing biochar, zeolite and wood vinegar for composting of pig manure: the effect on greenhouse gas emission and nitrogen conservation, Waste Manage., 74 (2018) 221–230.
  15. M.A. Sanchez-Monedero, M.L. Cayuela, A. Roig, K. Jindo, C. Mondini, N. Bolan, Role of biochar as an additive in organic waste composting, Bioresour. Technol., 247 (2018) 1155–1164.
  16. D.L. Maurer, J.A. Koziel, K. Kalus, D.S. Andersen, S. Opalinski, Pilot-scale testing of non-activated biochar for swine manure treatment and mitigation of ammonia, hydrogen sulfide, odorous volatile organic compounds (VOCs), and greenhouse gas emissions, Sustainability, 9 (2017) 1–17, doi: 10.3390/su9060929.
  17. D. Janczak, K. Malińska, W. Czekała, R. Caceres, A. Lewicki, J. Dach, Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw, Waste Manage., 66 (2017) 36–45.
  18. M.J. Ahmed, B.H. Hameed, Adsorption behavior of salicylic acid on biochar as derived from the thermal pyrolysis of barley straws, J. Cleaner Prod., 195 (2018) 1162–1169.
  19. Z. Liu, F.-S. Zhang, J. Wu, Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment, Fuel, 89 (2010) 510–514.
  20. M. Ahmad, S.S. Lee, X. Dou, D. Mohan, J.-K. Sung, J.E. Yang, Effects of pyrolysis temperature on soybean stover – peanut shell-derived biochar properties and TCE adsorption in water, Bioresour. Technol., 118 (2012) 536–544.
  21. M.A. Franciski, E.C. Peres, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, Development of CO2 activated biochar from solid waste of a beer industry and its application for methylene blue adsorption, Waste Manage., 78 (2018) 630–638.
  22. D. Mohan, S. Rajput, V.K. Singh, P.H. Steele, C.U. Pitman Jr., Modeling and evaluation of chromium remediation from using low cost bio-char, a green adsorbent, J. Hazard. Mater., 188 (2011) 319–333.
  23. S.F. Vaughn, F.D. Dinelli, J.A. Kenar, M.A. Jackson, A.J. Thomas, S.C. Peterson, Physical and chemical properties of pyrolyzed biosolids for utilization in sand-based turfgrass rootzones, Waste Manage., 76 (2018) 98–105.
  24. K. Wystalska, K. Malińska, R. Włodarczyk, O. Chajczyk, Effects of pyrolysis parameters on the yield and properties of biochar from pelletized sunflower husk, E3S Web Conf., 44 (2018) 00197, doi: 10.1051/e3sconf/20184400197.
  25. C.E. Efika, J.A. Onwudili, P.T. Williams Influence of heating rates on the products of high-temperature pyrolysis of waste wood pellets and biomass model compounds, Waste Manage., 76 (2018) 497–506.
  26. A. Trubetskaya, P.A. Jensen, A.D. Jensen, M. Steibel, H. Spliethoff, P. Glarborg, Influence of fast pyrolysis conditions on yield and structural transformation of biomass chars, Fuel Process. Technol., 140 (2015) 205–214.
  27. G. De Bhowmick, A.K. Sarmah, R. Sen, Production and characterization of a value added biochar mix using seaweed, rice husk and pine sawdust: a parametric study, J. Cleaner Prod., 200 (2018) 641–656.
  28. Y.-H. Jiang, A.-Y. Li, H. Deng, C.-H. Ye, Y.-Q. Wu, Y.-D. Linmu, H.-L. Hang, Characteristics of nitrogen and phosphorus adsorption by Mg-loaded biochar from different feedstocks, Bioresour. Technol., 276 (2019) 183–189.
  29. M.F. El-Banna, A. Mosa, B. Gao, X. Yin, Z. Ahmad, H. Wang, Sorption of lead ions onto oxidized bagasse-biochar mitigates Pb-induced oxidative stress on hydroponically grown chicory: experimental observations and mechanisms, Chemosphere, 208 (2018) 887–898.
  30. P. Regkouzas, E. Diamadopoulos, Adsorption of selected organic micro-pollutants on sewage sludge biochar, Chemosphere, 224 (2019) 840–851.
  31. S. Yao, X. Li, H. Cheng, C. Zhang, Y. Bian, X. Jiang, Y. Song, Resource utilization of a typical vegetable waste as biochars in removing phthalate acid esters from water: a sorption case study, Bioresour. Technol., 293 (2019) 122081, doi: 10.1016/j. biortech.2019.122081.
  32. Y. Tang, M.A. Alam, K.O. Konhauser, D.S. Alessi, S. Xu, W.J. Tian, Y. Liu, Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater, J. Cleaner Prod., 209 (2019) 927–936.
  33. E. Viglasova, M. Galambos, Z. Dankova, L. Krivosudsky, C.L. Lengauer, R. Hood-Nowotny, G. Soja, A. Rompel, M. Matik, J. Briancin, Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal, Waste Manage., 79 (2018) 385–394.
  34. D. Xu, J. Cao, Y. Li, A. Howard, Y. Kewei, Effect of pyrolysis temperature on characteristics of biochars derived from different feedstocks: a case study on ammonium adsorption capacity, Waste Manage., 87 (2019) 652–660.
  35. X. Bai, Z. Li, Y. Zhang, J. Ni, X. Wang, X. Zhou, Recovery of ammonium in urine by biochar derived from faecal sludge and its application as soil conditioner, Waste Biomass Valorization, 9 (2018) 1619–1628.
  36. S. Mandal, B. Sarkar, A.D. Igalavithana, Y.S. Ok, X. Yang, E. Lombi, N. Bolan, Mechanistic insights of 2,4-D sorption onto biochar: influence of feedstock material and biochar properties, Bioresour. Technol., 246 (2017) 160–167.
  37. P. Devi, A.K. Saroha, Utilization of sludge based adsorbents for the removal of various pollutants: a review, Sci. Total Environ., 578 (2017) 16–33.
  38. N. Heaney, E. Ukpong, C. Lin, Low-molecular-weight organic acids enable biochar to immobilize nitrate, Chemosphere, 240 (2020) 124872, doi: 10.1016/j.chemosphere.2019.124872.
  39. J.W. Jin, M.Y. Wang, Y.C. Cao, S.C. Wu, P. Liang, Y. Li, Y.N. Zhang, J. Zhang, M.H. Wong, S.D. Shan, P. Christie, Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: biochar properties and environmental risk from metals, Bioresour. Technol., 228 (2017) 218–226.
  40. G. Xu, X. Yang, L. Spinosa, Development of sludge-based adsorbents: preparation, characterization, utilization and its feasibility assessment, J. Environ. Manage., 151 (2015) 221–232.
  41. S.T. Baber, J. Yin, K. Draper, T.A. Trabold, Closing nutrient cycles with biochar – from filtration to fertilizer, J. Cleaner Prod., 197 (2018) 1597–1606.
  42. H.M. El Sharkawi, S. Tojo, T. Chosa, F.M. Malhat, A.M. Youssef, Biochar-ammonium phosphate as an uncoated-slow release fertilizer in sandy soil, Biomass Bioenergy, 117 (2018) 154–160.
  43. E. Agyarko-Mintah, A. Cowie, L. van Zwieten, B.P. Singh, R. Smilli, S. Harden, F. Fornasier, Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting, Waste Manage., 61 (2017) 129–137.
  44. K. Malińska, M. Zabochnicka-Świątek, J. Dach, Effect of biochar amendment on ammonia emission during composting of sewage sludge, Ecol. Eng., 71 (2014) 474–478.
  45. A. Kwarciak-Kozłowska, B. Bańska, Biofiltracja jako metoda unieszkodliwiania odorów powstających podczas kompostowania frakcji biodegradowalnej odpadów komunalnych i przemysłowych, Inż. Ochr. Środowiska, 17 (2014) 631–645.
  46. X. Zhang, B. Gao, Y. Zheng, X. Hu, A.E. Creamer, M.D. Annable, Y. Li, Biochar for volatile organic compound (VOC) removal: sorption performance and governing mechanisms, Bioresour. Technol., 245 (2017) 606–614.
  47. R. Cáceres, K. Malińska, O. Marfà, Nitrification within composting: a review, Waste Manage., 72 (2018) 119–137.
  48. M.C. Gutiérrez, J.A. Siles, J. Diz, A.F. Chica, M.A. Martin, Modeling of composting process of different organic waste at pilot scale: biodegradability and odor emissions, Waste Manage., 59 (2017) 48–58.
  49. P. Rybarczyk, M. Gospodarek, B. Szulczyński, J. Gębicki, B. Szulczyński, J. Gębicki, J. Namieśnik, Laboratoryjny biofiltr strużkowy do oczyszczania powietrza z lotnych związków organicznych o charakterze odorowym, Aparatura Badawcza Dydaktyczna, 24 (2019) 24–30.
  50. A. Kwarciak-Kozłowska, R. Włodarczyk, K. Wystalska, Biochar compared with activated granular carbon for landfill leachate treatment, E3S Web Conf., 100 (2019) 00042, doi: 10.1051/ e3sconf/201910000042.
  51. A. Jędrczak, Biologiczne Przetwarzanie Odpadów, Wydawnictwo Naukowe PWN, Warszawa, 2007.
  52. E. Pagans, X. Font, A. Sánchez, Biofiltration for ammonia removal from composting exhaust gases, Chem. Eng. J., 113 (2005) 105–110.
  53. E. Pagans, X. Font, A. Sánchez, Ammonia emissions from the composting of different organic wastes, dependency on process temperature, Chemosphere, 62 (2006) 1534–1542.
  54. S.A.K. Tweib, A.I. Ekhmaj, Co-composting of sewage sludge with food waste using bin composter, Al-Mukhtar J. Sci., 33 (2017) 24–35.
  55. A.A.M. Haque, Z. Gholami, Effect of manual turning frequency on physico-chemical parameters during the oil palm frond and cow dung composting, Caspian J. Appl. Sci. Res., 1 (2012) 49–59.
  56. Y.-C. Chung, Y.-Y. Lin, C.-P. Tseng, C.-P. Removal of high concentration NH3 and coexistent H2S by biological activated carbon (BAC) biotrickling filter, Bioresour. Technol., 96 (2005) 1812–1820.
  57. M. Goncalves, L. Sanchez-Garcia, E. de Oliveira Jardim, J. Silvestre-Albero, F. Rodriguez-Reinoso, Ammonia removal using activated carbons: effects of the surface chemistry in dry and moist conditions, Environ. Sci. Technol., 45 (2011) 10605–10610.
  58. A.H. Fahmi, A.W. Samsuri, H. Jol, D. Singh, Physical modification of biochar to expose the inner pores and their functional groups to enhance lead adsorption, RSC Adv., 8 (2018) 38270–38280.
  59. B. Wang, J. Lehmann, K. Hanley, R. Hestrin, A. Enders, Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH, Chemosphere, 138 (2015) 120–126.
  60. B. Wang, J. Lehmann, K. Hanley, R. Hestrin, A. Enders, Ammonium retention by oxidized biochars produced at different pyrolysis temperatures and residence times, RSC Adv., 6 (2016) 41907–41913.
  61. R.B. Fidel, D.A. Laird, M.L. Thompson, M. Lawrinenko, Characterization and quantification of biochar alkalinity, Chemosphere, 167 (2017) 367–373.
  62. D. Roy, A. Azais, S. Benkaraache, P. Drogui, R.D. Tyagi, Composting leachate: characterization, treatment, and future perspectives, Rev. Environ. Sci. Biotechnol., 17 (2018) 323–349.
  63. R. Devi, V. Dahiya, COD and BOD removal from domestic wastewater generated in decentralised sectors, Bioresour. Technol., 99 (2008) 344–349.
  64. D. George, P. Mallery, IBM SPSS Statistics 26 Step by Step: A Simple Guide and Reference, Routledge, New York, 2019.