References
- G. Agegnehu, A.K. Srivastava, K.I. Bird, The role of biochar
and biochar-compost in improving soli quality and crop
performance: a review, Appl. Soil Ecol., 119 (2017) 156–170.
- B. Zhao, D. O’Connor, J. Zhang, T. Peng, Z. Shen, D.C.W. Tsang,
D. Hou, Effect of pyrolysis temperature, heating rate, and
residence time on rapeseed stem derived biochar, J. Cleaner
Prod., 174(2018) 977–987.
- S.D. Ferreira, C. Manera, W.P. Silvestre, G.F. Pauletti,
C.R. Altafini, M. Godinho, Use of biochar produced from
elephant grass by pyrolysis in a screw reactor as a soil
amendment, Waste Biomass Valor., 10 (2019) 3089–3100.
- Z. Zhang, Effects of biochar amendment on bacterial and fungal
diversity for co-composting of gelatin industry sludge mixed
with organic fraction of municipal solid waste, Bioresour.
Technol., 246 (2017) 214–223.
- W. Czekała, A. Jeżowska, D. Chełkowski, The use of biochar for
the production of organic fertilizers, J. Ecol. Eng., 20 (2019) 1–8.
- P. Oleszczuk, M. Rycaj, J. Lehmann, G. Cornelissen, Influence
of activated carbon and biochar on phytotoxicity of air-dried
sewage sludge to Lepidium sativum, Ecotoxicol. Environ.,
80 (2012) 321–326.
- M. Uchimiya, S. Chang, K.T. Klasson, Screening biochars for
heavy metal retention in soil: role of oxygen functional groups,
J. Hazard. Mater., 190 (2011) 432–441.
- E.F. Zama, Y.-G. Zhu, B.J. Reid, G.-X. Sun, The role of biochar
properties in influencing the sorption and desorption of
Pb(II), Cd(II) and As(III) in aqueous solution, J. Cleaner Prod.,
148 (2017) 127–136.
- H. Zhou, H. Meng, L. Zhao, Y. Shen, Y. Hou, H. Cheng,
L. Song, Effect of biochar and humic acid on the copper, lead,
and cadmium passivation during composting, Bioresour.
Technol., 258 (2018) 279–286.
- B. Zhao, R. Xu, F. Ma, Y. Li, L. Wang, Effects of biochar derived
from chicken manure and rape straw on speciation and
phytoavailability of Cd to maize in artificially contaminated
loess soil, J. Environ. Manage., 184 (2016) 569–574.
- E. Agyarko-Mintah, A. Cowie, B.P. Singh, S. Joseph, L. Van
Zwieten, A. Cowie, S. Harden, R. Smillie, Biochar increase
nitrogen retention and lowers greenhouse gas emission when
added to composting poultry litter, Waste Manage., 61 (2017)
138–149.
- Q. Wang, W. Wei, Y. Gond, Q. Yu, Q. Li, J. Sun, Z. Yuan,
Technologies for reducing sludge production in wastewater
treatment plants: state of the art, Sci. Total Environ., 587–588
(2017) 510–521.
- S. Mia, M.E. Uddin, M.A. Kader, A. Ahsan, M.A. Mannan,
M.M. Hossain, Z.M. Solaiman, Pyrolysis and co-composting
of municipal organic waste in Bangladesh: a quantitative
estimate of recyclable nutrients, greenhouse gas emissions,
and economic benefits, Waste Manage., 75 (2018) 503–513.
- Q. Wang, M.K. Awasthi, X. Ren, J. Zhao, R. Li, Z. Wang,
M. Wang, H. Chen, Z. Zhang, Combing biochar, zeolite and
wood vinegar for composting of pig manure: the effect on
greenhouse gas emission and nitrogen conservation, Waste
Manage., 74 (2018) 221–230.
- M.A. Sanchez-Monedero, M.L. Cayuela, A. Roig, K. Jindo,
C. Mondini, N. Bolan, Role of biochar as an additive in organic
waste composting, Bioresour. Technol., 247 (2018) 1155–1164.
- D.L. Maurer, J.A. Koziel, K. Kalus, D.S. Andersen, S. Opalinski,
Pilot-scale testing of non-activated biochar for swine
manure treatment and mitigation of ammonia, hydrogen
sulfide, odorous volatile organic compounds (VOCs), and
greenhouse gas emissions, Sustainability, 9 (2017) 1–17, doi:
10.3390/su9060929.
- D. Janczak, K. Malińska, W. Czekała, R. Caceres, A. Lewicki,
J. Dach, Biochar to reduce ammonia emissions in gaseous and
liquid phase during composting of poultry manure with wheat
straw, Waste Manage., 66 (2017) 36–45.
- M.J. Ahmed, B.H. Hameed, Adsorption behavior of salicylic
acid on biochar as derived from the thermal pyrolysis of barley
straws, J. Cleaner Prod., 195 (2018) 1162–1169.
- Z. Liu, F.-S. Zhang, J. Wu, Characterization and application of
chars produced from pinewood pyrolysis and hydrothermal
treatment, Fuel, 89 (2010) 510–514.
- M. Ahmad, S.S. Lee, X. Dou, D. Mohan, J.-K. Sung, J.E. Yang,
Effects of pyrolysis temperature on soybean stover – peanut
shell-derived biochar properties and TCE adsorption in water,
Bioresour. Technol., 118 (2012) 536–544.
- M.A. Franciski, E.C. Peres, M. Godinho, D. Perondi, E.L. Foletto,
G.C. Collazzo, G.L. Dotto, Development of CO2 activated
biochar from solid waste of a beer industry and its application
for methylene blue adsorption, Waste Manage., 78 (2018)
630–638.
- D. Mohan, S. Rajput, V.K. Singh, P.H. Steele, C.U. Pitman Jr.,
Modeling and evaluation of chromium remediation from
using low cost bio-char, a green adsorbent, J. Hazard. Mater.,
188 (2011) 319–333.
- S.F. Vaughn, F.D. Dinelli, J.A. Kenar, M.A. Jackson, A.J. Thomas,
S.C. Peterson, Physical and chemical properties of pyrolyzed
biosolids for utilization in sand-based turfgrass rootzones,
Waste Manage., 76 (2018) 98–105.
- K. Wystalska, K. Malińska, R. Włodarczyk, O. Chajczyk, Effects
of pyrolysis parameters on the yield and properties of biochar
from pelletized sunflower husk, E3S Web Conf., 44 (2018)
00197, doi: 10.1051/e3sconf/20184400197.
- C.E. Efika, J.A. Onwudili, P.T. Williams Influence of heating
rates on the products of high-temperature pyrolysis of waste
wood pellets and biomass model compounds, Waste Manage.,
76 (2018) 497–506.
- A. Trubetskaya, P.A. Jensen, A.D. Jensen, M. Steibel,
H. Spliethoff, P. Glarborg, Influence of fast pyrolysis conditions
on yield and structural transformation of biomass chars, Fuel
Process. Technol., 140 (2015) 205–214.
- G. De Bhowmick, A.K. Sarmah, R. Sen, Production and
characterization of a value added biochar mix using seaweed,
rice husk and pine sawdust: a parametric study, J. Cleaner
Prod., 200 (2018) 641–656.
- Y.-H. Jiang, A.-Y. Li, H. Deng, C.-H. Ye, Y.-Q. Wu, Y.-D. Linmu,
H.-L. Hang, Characteristics of nitrogen and phosphorus
adsorption by Mg-loaded biochar from different feedstocks,
Bioresour. Technol., 276 (2019) 183–189.
- M.F. El-Banna, A. Mosa, B. Gao, X. Yin, Z. Ahmad, H. Wang,
Sorption of lead ions onto oxidized bagasse-biochar mitigates
Pb-induced oxidative stress on hydroponically grown chicory:
experimental observations and mechanisms, Chemosphere,
208 (2018) 887–898.
- P. Regkouzas, E. Diamadopoulos, Adsorption of selected organic
micro-pollutants on sewage sludge biochar, Chemosphere,
224 (2019) 840–851.
- S. Yao, X. Li, H. Cheng, C. Zhang, Y. Bian, X. Jiang, Y. Song,
Resource utilization of a typical vegetable waste as biochars
in removing phthalate acid esters from water: a sorption case
study, Bioresour. Technol., 293 (2019) 122081, doi: 10.1016/j.
biortech.2019.122081.
- Y. Tang, M.A. Alam, K.O. Konhauser, D.S. Alessi, S. Xu,
W.J. Tian, Y. Liu, Influence of pyrolysis temperature on
production of digested sludge biochar and its application for
ammonium removal from municipal wastewater, J. Cleaner
Prod., 209 (2019) 927–936.
- E. Viglasova, M. Galambos, Z. Dankova, L. Krivosudsky,
C.L. Lengauer, R. Hood-Nowotny, G. Soja, A. Rompel,
M. Matik, J. Briancin, Production, characterization and
adsorption studies of bamboo-based biochar/montmorillonite
composite for nitrate removal, Waste Manage., 79 (2018) 385–394.
- D. Xu, J. Cao, Y. Li, A. Howard, Y. Kewei, Effect of pyrolysis
temperature on characteristics of biochars derived from
different feedstocks: a case study on ammonium adsorption
capacity, Waste Manage., 87 (2019) 652–660.
- X. Bai, Z. Li, Y. Zhang, J. Ni, X. Wang, X. Zhou, Recovery of
ammonium in urine by biochar derived from faecal sludge and
its application as soil conditioner, Waste Biomass Valorization,
9 (2018) 1619–1628.
- S. Mandal, B. Sarkar, A.D. Igalavithana, Y.S. Ok, X. Yang,
E. Lombi, N. Bolan, Mechanistic insights of 2,4-D sorption
onto biochar: influence of feedstock material and biochar
properties, Bioresour. Technol., 246 (2017) 160–167.
- P. Devi, A.K. Saroha, Utilization of sludge based adsorbents
for the removal of various pollutants: a review, Sci. Total
Environ., 578 (2017) 16–33.
- N. Heaney, E. Ukpong, C. Lin, Low-molecular-weight organic
acids enable biochar to immobilize nitrate, Chemosphere,
240 (2020) 124872, doi: 10.1016/j.chemosphere.2019.124872.
- J.W. Jin, M.Y. Wang, Y.C. Cao, S.C. Wu, P. Liang, Y. Li,
Y.N. Zhang, J. Zhang, M.H. Wong, S.D. Shan, P. Christie,
Cumulative effects of bamboo sawdust addition on pyrolysis
of sewage sludge: biochar properties and environmental risk
from metals, Bioresour. Technol., 228 (2017) 218–226.
- G. Xu, X. Yang, L. Spinosa, Development of sludge-based
adsorbents: preparation, characterization, utilization and its
feasibility assessment, J. Environ. Manage., 151 (2015) 221–232.
- S.T. Baber, J. Yin, K. Draper, T.A. Trabold, Closing nutrient
cycles with biochar – from filtration to fertilizer, J. Cleaner
Prod., 197 (2018) 1597–1606.
- H.M. El Sharkawi, S. Tojo, T. Chosa, F.M. Malhat, A.M. Youssef,
Biochar-ammonium phosphate as an uncoated-slow release
fertilizer in sandy soil, Biomass Bioenergy, 117 (2018) 154–160.
- E. Agyarko-Mintah, A. Cowie, L. van Zwieten, B.P. Singh,
R. Smilli, S. Harden, F. Fornasier, Biochar lowers ammonia
emission and improves nitrogen retention in poultry litter
composting, Waste Manage., 61 (2017) 129–137.
- K. Malińska, M. Zabochnicka-Świątek, J. Dach, Effect of biochar
amendment on ammonia emission during composting of
sewage sludge, Ecol. Eng., 71 (2014) 474–478.
- A. Kwarciak-Kozłowska, B. Bańska, Biofiltracja jako metoda
unieszkodliwiania odorów powstających podczas kompostowania
frakcji biodegradowalnej odpadów komunalnych
i przemysłowych, Inż. Ochr. Środowiska, 17 (2014) 631–645.
- X. Zhang, B. Gao, Y. Zheng, X. Hu, A.E. Creamer, M.D. Annable,
Y. Li, Biochar for volatile organic compound (VOC) removal:
sorption performance and governing mechanisms, Bioresour.
Technol., 245 (2017) 606–614.
- R. Cáceres, K. Malińska, O. Marfà, Nitrification within
composting: a review, Waste Manage., 72 (2018) 119–137.
- M.C. Gutiérrez, J.A. Siles, J. Diz, A.F. Chica, M.A. Martin,
Modeling of composting process of different organic waste
at pilot scale: biodegradability and odor emissions, Waste
Manage., 59 (2017) 48–58.
- P. Rybarczyk, M. Gospodarek, B. Szulczyński, J. Gębicki,
B. Szulczyński, J. Gębicki, J. Namieśnik, Laboratoryjny biofiltr
strużkowy do oczyszczania powietrza z lotnych związków
organicznych o charakterze odorowym, Aparatura Badawcza
Dydaktyczna, 24 (2019) 24–30.
- A. Kwarciak-Kozłowska, R. Włodarczyk, K. Wystalska, Biochar
compared with activated granular carbon for landfill leachate
treatment, E3S Web Conf., 100 (2019) 00042, doi: 10.1051/
e3sconf/201910000042.
- A. Jędrczak, Biologiczne Przetwarzanie Odpadów,
Wydawnictwo Naukowe PWN, Warszawa, 2007.
- E. Pagans, X. Font, A. Sánchez, Biofiltration for ammonia
removal from composting exhaust gases, Chem. Eng. J.,
113 (2005) 105–110.
- E. Pagans, X. Font, A. Sánchez, Ammonia emissions from the
composting of different organic wastes, dependency on process
temperature, Chemosphere, 62 (2006) 1534–1542.
- S.A.K. Tweib, A.I. Ekhmaj, Co-composting of sewage sludge
with food waste using bin composter, Al-Mukhtar J. Sci.,
33 (2017) 24–35.
- A.A.M. Haque, Z. Gholami, Effect of manual turning frequency
on physico-chemical parameters during the oil palm frond and
cow dung composting, Caspian J. Appl. Sci. Res., 1 (2012) 49–59.
- Y.-C. Chung, Y.-Y. Lin, C.-P. Tseng, C.-P. Removal of high
concentration NH3 and coexistent H2S by biological activated
carbon (BAC) biotrickling filter, Bioresour. Technol., 96 (2005)
1812–1820.
- M. Goncalves, L. Sanchez-Garcia, E. de Oliveira Jardim,
J. Silvestre-Albero, F. Rodriguez-Reinoso, Ammonia removal
using activated carbons: effects of the surface chemistry in
dry and moist conditions, Environ. Sci. Technol., 45 (2011)
10605–10610.
- A.H. Fahmi, A.W. Samsuri, H. Jol, D. Singh, Physical
modification of biochar to expose the inner pores and their
functional groups to enhance lead adsorption, RSC Adv.,
8 (2018) 38270–38280.
- B. Wang, J. Lehmann, K. Hanley, R. Hestrin, A. Enders,
Adsorption and desorption of ammonium by maple wood
biochar as a function of oxidation and pH, Chemosphere,
138 (2015) 120–126.
- B. Wang, J. Lehmann, K. Hanley, R. Hestrin, A. Enders,
Ammonium retention by oxidized biochars produced at
different pyrolysis temperatures and residence times, RSC
Adv., 6 (2016) 41907–41913.
- R.B. Fidel, D.A. Laird, M.L. Thompson, M. Lawrinenko,
Characterization and quantification of biochar alkalinity,
Chemosphere, 167 (2017) 367–373.
- D. Roy, A. Azais, S. Benkaraache, P. Drogui, R.D. Tyagi,
Composting leachate: characterization, treatment, and future
perspectives, Rev. Environ. Sci. Biotechnol., 17 (2018) 323–349.
- R. Devi, V. Dahiya, COD and BOD removal from domestic
wastewater generated in decentralised sectors, Bioresour.
Technol., 99 (2008) 344–349.
- D. George, P. Mallery, IBM SPSS Statistics 26 Step by Step: A
Simple Guide and Reference, Routledge, New York, 2019.