References

  1. A.U. Rahmah, S. Harimurti, A.A. Omar, T. Murugesan, Optimization of oxytetracycline degradation inside UV/H2O2 reactor using Box-Behnken experimental design, J. Appl. Sci., 12 (2012) 1154–1159.
  2. K.P. Singh, A.K. Singh, U.V. Singh, P. Verma, Optimizing removal of ibuprofen from water by magnetic nanocomposite using Box–Behnken design, Environ. Sci. Pollut. Res., 19 (2012) 724–738.
  3. N. Le-Minh, S.J. Khan, J.E. Drewes, R.M. Stuetz, Fate of antibiotics during municipal water recycling treatment processes, Water Res., 15 (2010) 4295–4323.
  4. S. Rakshit, D. Sarkar, E.J. Elzinga, P. Punamiya, R. Datta, Surface complexation of oxytetracycline by magnetite: effect of solution properties, Vadose Zone J., 13 (2014) 1–10.
  5. S. Rakshit, E.J. Elzinga, R. Datta, D. Sarkar, In situ attenuated total reflectance Fourier-transform infrared study of oxytetracycline sorption on magnetite, J. Environ. Qual., 42 (2013) 822–827.
  6. D. Zhang, H.Y. Niu, X.L. Zhang, Z.F. Meng, Y.Q. Cai, Strong adsorption of chlorotetracycline on magnetite nanoparticles, J. Hazard. Mater., 192 (2011) 1088–1093.
  7. L.L. Ji, F.L. Liu, Z.Y. Xu, S.R. Zheng, D.Q. Zhu, Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro- and mesoporous carbons, Environ. Sci. Technol., 8 (2010) 3116–3122.
  8. Y. Gao, Y. Li, L. Zhang, H. Huang, J.J. Hu, S.M. Shah, X.G. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci., 368 (2012) 540–546.
  9. M.C. Zhang, A.M. Li, Q. Zhou, C.D. Shuang, W.W. Zhou, M.Q. Wang, Effect of pore size distribution on tetracycline adsorption using magnetic hypercrosslinked resins, Microporous Mesoporous Mater., 184 (2014) 105–111.
  10. A.L.P.F. Caroni, C.R.M. de Lima, M.R. Pereira, J.L.C. Fonseca, Tetracycline adsorption on chitosan: a mechanistic description based on mass uptake and zeta potential measurements, Colloids Surf., B, 100 (2012) 222–228.
  11. N. Liu, M.-X. Wang, M.-M. Liu, F. Liu, L. Weng, L.K. Koopal, W.-F. Tan, Sorption of tetracycline on organo-montmorillonites, J. Hazard. Mater., 225–226 (2012) 28–35.
  12. R. Sivashankar, A.B. Sathya, K. Vasantharaj, V. Sivasubramanian, Magnetic composite an environmental super adsorbent for dye sequestration – a review, Environ. Nanotechnol. Monit. Manage., 1–2 (2014) 36–49.
  13. F. Shariati, Sh. Shariati, M.A. Amiri Moghaddam, Application of magnetite nanoparticles modified azolla as an adsorbent for removal of reactive yellow dye from aqueous solutions, Desal. Water Treat., 212 (2021) 323–332.
  14. M. Herlekar, S. Barve, R. Kumar, Plant-mediated green synthesis of iron nanoparticles, J. Nanopart., 2014 (2014) 140614, doi: 10.1155/2014/140614.
  15. N. Besharati, N. Alizadeh, Sh. Shariati, Removal of cationic dye methylene blue (MB) from aqueous solution by coffee and peanut husk modified with magnetite iron oxide nanoparticles, J. Mex. Chem. Soc., 62 (2018) 110–124.
  16. Sh. Shariati, M. Faraji, Y. Yamini, A.A. Rajabi, Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions, Desalination, 270 (2011) 160–165.
  17. S. Toutounchi, Sh. Shariati, K. Mahanpoor, Sulfonic acid functionalized magnetite nanomesoporous carbons for removal of Safranin O from aqueous solutions, Desal. Water Treat., 153 (2019) 253–363.
  18. J.N. Park, K.J. An, Y.S. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, T.W. Hyeon, Ultra-largescale syntheses of monodisperse nanocrystals, Nat. Mater., 3 (2004) 891–895.
  19. J.H. Jang, H.B. Lim, Characterization and analytical application of surface modified magnetic nanoparticles, Microchem. J., 94 (2010) 148–158.
  20. A.R. Yari, G. Majidi, M. Tanhaye Reshvanloo, M. Ansari, S. Nazari, M. Emami Kale Sar, M. Khazaei, M.S. Tabatabai-Majd, Using eggshell in Acid Orange 2 dye removal from aqueous solution, Iranian J. Health Sci., 3 (2015) 38–45.
  21. T.V.N. Padmesh, K. Vijayaraghavan, G. Sekaran, M. Velan, Batch and column studies on biosorption of acid dyes on fresh water macro alga azolla filiculoides, J. Hazard. Mater., 125 (2005) 121–129.
  22. H. Benaïssa, Removal of cadmium Ions by sorption from aqueous solutions using low-cost materials, Thirteenth International Water Technology Conference, IWTC 13 2009, Hurghada, Egypt, 2009.
  23. R.A. Figueroa, A. Leonard, A.A. Mackay, Modeling tetracycline antibiotic sorption to clays, Environ. Sci. Technol., 38 (2004) 476–483.
  24. Sh. Shariati, Y. Yamini, A. Esrafili, Carrier mediated hollow fiber liquid phase microextraction combined with HPLC-UV for preconcentration and determination of some tetracycline antibiotics, J. Chromatogr. B, 877 (2009) 393–400.
  25. D. Liu, N. Song, W. Feng, Q. Jia, Synthesis of graphene oxide functionalized surface-imprinted polymer for the preconcentration of tetracycline antibiotics, R. Soc. Chem. Adv., 6 (2016) 11742–11748.
  26. P. Raeiatbin, Y.S. Açıkel, Removal of tetracycline by magnetic chitosan nanoparticles from medical wastewaters, Desal. Water Treat., 73 (2017) 380–388.
  27. X.J. Hu, Y.L. Zhao, H. Wang, X.F. Tan, Y.X. Yang, Y.G. Liu, Efficient removal of tetracycline from aqueous media with a Fe3O4 nanoparticles@graphene oxide nanosheets assembly, Int. J. Environ. Res. Public Health., 14 (2017) 1495, doi: 10.3390/ ijerph14121495.
  28. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, Am. Chem. Soc., 40 (1918) 1361–1403.
  29. H.M.F. Freundlich, Over the adsorption in solution, Z. Phys. Chem., 57 (1906) 385–470.
  30. M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Physiol. Chem. USSR, 12 (1940) 271.
  31. Y.X. Lin, S. Xu, J. Li, Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles, Chem. Eng. J., 225 (2013) 679–685.
  32. C.Q. Chen, D.Z. Chen, S.S. Xie, H.Y. Quan, X.B. Luo, L. Guo, Adsorption behaviors of organic micropollutants on zirconium metal–organic framework UiO-66: analysis of surface interactions, ACS Appl. Mater. Interfaces, 9 (2017) 41043–41054.
  33. M. Rathod, S. Haldar, S. Basha, Nanocrystalline cellulose for removal of tetracycline hydrochloride from water via biosorption: equilibrium, kinetic and thermodynamic studies, Ecol. Eng., 84 (2015) 240–249.
  34. U.A. Guler, M. Sarioglu, Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies, J. Environ. Health Sci. Eng., 12 (2014) 79, doi: 10.1186/2052-336X-12-79.
  35. J. Kang, H.J. Liu, Y.-M. Zheng, J.H. Qu, J.P. Chen, Systematic study of synergistic and antagonistic effects on adsorption of tetracycline and copper onto a chitosan, J. Colloid Interface Sci., 344 (2010) 117–125.
  36. H.R. Pouretedal, N. Sadegh, Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood, J. Water Process Eng., 1 (2014) 64–73.
  37. P. Liao, Z.Y. Zhan, J. Dai, X.H. Wu, W.B. Zhang, K. Wang, S.H. Yuan, Adsorption of tetracycline and chloramphenicol in aqueous solutions by bamboo charcoal: a batch and fixed-bed column study, Chem. Eng. J., 228 (2013) 496–505.
  38. M. Stan, I. Lung, M.-L. Soran, C. Leostean, A. Popa, M. Stefan, M.D. Lazar, O. Opris, T.-D. Silipas, A.S. Porav, Removal of antibiotics from aqueous solutions by green synthesized magnetite nanoparticles with selected agro-waste extracts, Process Saf. Environ. Prot., 107 (2017) 357–372.