References
- A.U. Rahmah, S. Harimurti, A.A. Omar, T. Murugesan,
Optimization of oxytetracycline degradation inside UV/H2O2
reactor using Box-Behnken experimental design, J. Appl. Sci.,
12 (2012) 1154–1159.
- K.P. Singh, A.K. Singh, U.V. Singh, P. Verma, Optimizing
removal of ibuprofen from water by magnetic nanocomposite
using Box–Behnken design, Environ. Sci. Pollut. Res., 19 (2012)
724–738.
- N. Le-Minh, S.J. Khan, J.E. Drewes, R.M. Stuetz, Fate of
antibiotics during municipal water recycling treatment
processes, Water Res., 15 (2010) 4295–4323.
- S. Rakshit, D. Sarkar, E.J. Elzinga, P. Punamiya, R. Datta, Surface
complexation of oxytetracycline by magnetite: effect of solution
properties, Vadose Zone J., 13 (2014) 1–10.
- S. Rakshit, E.J. Elzinga, R. Datta, D. Sarkar, In situ attenuated total
reflectance Fourier-transform infrared study of oxytetracycline
sorption on magnetite, J. Environ. Qual., 42 (2013) 822–827.
- D. Zhang, H.Y. Niu, X.L. Zhang, Z.F. Meng, Y.Q. Cai, Strong
adsorption of chlorotetracycline on magnetite nanoparticles,
J. Hazard. Mater., 192 (2011) 1088–1093.
- L.L. Ji, F.L. Liu, Z.Y. Xu, S.R. Zheng, D.Q. Zhu, Adsorption of
pharmaceutical antibiotics on template-synthesized ordered
micro- and mesoporous carbons, Environ. Sci. Technol., 8 (2010)
3116–3122.
- Y. Gao, Y. Li, L. Zhang, H. Huang, J.J. Hu, S.M. Shah,
X.G. Su, Adsorption and removal of tetracycline antibiotics
from aqueous solution by graphene oxide, J. Colloid Interface
Sci., 368 (2012) 540–546.
- M.C. Zhang, A.M. Li, Q. Zhou, C.D. Shuang, W.W. Zhou,
M.Q. Wang, Effect of pore size distribution on tetracycline
adsorption using magnetic hypercrosslinked resins, Microporous
Mesoporous Mater., 184 (2014) 105–111.
- A.L.P.F. Caroni, C.R.M. de Lima, M.R. Pereira, J.L.C. Fonseca,
Tetracycline adsorption on chitosan: a mechanistic description
based on mass uptake and zeta potential measurements,
Colloids Surf., B, 100 (2012) 222–228.
- N. Liu, M.-X. Wang, M.-M. Liu, F. Liu, L. Weng, L.K. Koopal,
W.-F. Tan, Sorption of tetracycline on organo-montmorillonites,
J. Hazard. Mater., 225–226 (2012) 28–35.
- R. Sivashankar, A.B. Sathya, K. Vasantharaj, V. Sivasubramanian,
Magnetic composite an environmental super adsorbent for
dye sequestration – a review, Environ. Nanotechnol. Monit.
Manage., 1–2 (2014) 36–49.
- F. Shariati, Sh. Shariati, M.A. Amiri Moghaddam, Application
of magnetite nanoparticles modified azolla as an adsorbent for
removal of reactive yellow dye from aqueous solutions, Desal.
Water Treat., 212 (2021) 323–332.
- M. Herlekar, S. Barve, R. Kumar, Plant-mediated green
synthesis of iron nanoparticles, J. Nanopart., 2014 (2014) 140614,
doi: 10.1155/2014/140614.
- N. Besharati, N. Alizadeh, Sh. Shariati, Removal of cationic
dye methylene blue (MB) from aqueous solution by coffee and
peanut husk modified with magnetite iron oxide nanoparticles,
J. Mex. Chem. Soc., 62 (2018) 110–124.
- Sh. Shariati, M. Faraji, Y. Yamini, A.A. Rajabi, Fe3O4 magnetic
nanoparticles modified with sodium dodecyl sulfate for
removal of safranin O dye from aqueous solutions, Desalination,
270 (2011) 160–165.
- S. Toutounchi, Sh. Shariati, K. Mahanpoor, Sulfonic acid
functionalized magnetite nanomesoporous carbons for removal
of Safranin O from aqueous solutions, Desal. Water Treat., 153
(2019) 253–363.
- J.N. Park, K.J. An, Y.S. Hwang, J.-G. Park, H.-J. Noh,
J.-Y. Kim, J.-H. Park, N.-M. Hwang, T.W. Hyeon, Ultra-largescale
syntheses of monodisperse nanocrystals, Nat. Mater.,
3 (2004) 891–895.
- J.H. Jang, H.B. Lim, Characterization and analytical application
of surface modified magnetic nanoparticles, Microchem. J.,
94 (2010) 148–158.
- A.R. Yari, G. Majidi, M. Tanhaye Reshvanloo, M. Ansari,
S. Nazari, M. Emami Kale Sar, M. Khazaei, M.S. Tabatabai-Majd,
Using eggshell in Acid Orange 2 dye removal from aqueous
solution, Iranian J. Health Sci., 3 (2015) 38–45.
- T.V.N. Padmesh, K. Vijayaraghavan, G. Sekaran, M. Velan,
Batch and column studies on biosorption of acid dyes on fresh
water macro alga azolla filiculoides, J. Hazard. Mater., 125 (2005)
121–129.
- H. Benaïssa, Removal of cadmium Ions by sorption from
aqueous solutions using low-cost materials, Thirteenth
International Water Technology Conference, IWTC 13 2009,
Hurghada, Egypt, 2009.
- R.A. Figueroa, A. Leonard, A.A. Mackay, Modeling tetracycline
antibiotic sorption to clays, Environ. Sci. Technol., 38 (2004)
476–483.
- Sh. Shariati, Y. Yamini, A. Esrafili, Carrier mediated hollow
fiber liquid phase microextraction combined with HPLC-UV
for preconcentration and determination of some tetracycline
antibiotics, J. Chromatogr. B, 877 (2009) 393–400.
- D. Liu, N. Song, W. Feng, Q. Jia, Synthesis of graphene
oxide functionalized surface-imprinted polymer for the
preconcentration of tetracycline antibiotics, R. Soc. Chem.
Adv., 6 (2016) 11742–11748.
- P. Raeiatbin, Y.S. Açıkel, Removal of tetracycline by magnetic
chitosan nanoparticles from medical wastewaters, Desal.
Water Treat., 73 (2017) 380–388.
- X.J. Hu, Y.L. Zhao, H. Wang, X.F. Tan, Y.X. Yang, Y.G. Liu,
Efficient removal of tetracycline from aqueous media with a
Fe3O4 nanoparticles@graphene oxide nanosheets assembly, Int.
J. Environ. Res. Public Health., 14 (2017) 1495, doi: 10.3390/
ijerph14121495.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, Am. Chem. Soc., 40 (1918) 1361–1403.
- H.M.F. Freundlich, Over the adsorption in solution, Z. Phys.
Chem., 57 (1906) 385–470.
- M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir
isotherms, Acta Physiol. Chem. USSR, 12 (1940) 271.
- Y.X. Lin, S. Xu, J. Li, Fast and highly efficient tetracyclines
removal from environmental waters by graphene oxide
functionalized magnetic particles, Chem. Eng. J., 225 (2013)
679–685.
- C.Q. Chen, D.Z. Chen, S.S. Xie, H.Y. Quan, X.B. Luo, L. Guo,
Adsorption behaviors of organic micropollutants on zirconium
metal–organic framework UiO-66: analysis of surface
interactions, ACS Appl. Mater. Interfaces, 9 (2017) 41043–41054.
- M. Rathod, S. Haldar, S. Basha, Nanocrystalline cellulose
for removal of tetracycline hydrochloride from water via
biosorption: equilibrium, kinetic and thermodynamic studies,
Ecol. Eng., 84 (2015) 240–249.
- U.A. Guler, M. Sarioglu, Removal of tetracycline from
wastewater using pumice stone: equilibrium, kinetic and
thermodynamic studies, J. Environ. Health Sci. Eng., 12 (2014)
79, doi: 10.1186/2052-336X-12-79.
- J. Kang, H.J. Liu, Y.-M. Zheng, J.H. Qu, J.P. Chen, Systematic
study of synergistic and antagonistic effects on adsorption of
tetracycline and copper onto a chitosan, J. Colloid Interface Sci.,
344 (2010) 117–125.
- H.R. Pouretedal, N. Sadegh, Effective removal of Amoxicillin,
Cephalexin, Tetracycline and Penicillin G from aqueous
solutions using activated carbon nanoparticles prepared from
vine wood, J. Water Process Eng., 1 (2014) 64–73.
- P. Liao, Z.Y. Zhan, J. Dai, X.H. Wu, W.B. Zhang, K. Wang,
S.H. Yuan, Adsorption of tetracycline and chloramphenicol in
aqueous solutions by bamboo charcoal: a batch and fixed-bed
column study, Chem. Eng. J., 228 (2013) 496–505.
- M. Stan, I. Lung, M.-L. Soran, C. Leostean, A. Popa, M. Stefan,
M.D. Lazar, O. Opris, T.-D. Silipas, A.S. Porav, Removal of
antibiotics from aqueous solutions by green synthesized
magnetite nanoparticles with selected agro-waste extracts,
Process Saf. Environ. Prot., 107 (2017) 357–372.