References

  1. P.K. Mutiyar, A.K. Mittal, Risk assessment of antibiotic residues in different water matrices in India: key issues and challenges, Environ. Sci. Pollut. Res., 21 (2014) 7723–7736.
  2. L. Riaz, T. Mahmood, A. Kamal, M. Shafqat, A. Rashid, Industrial release of fluoroquinolones (FQs) in the wastewater bodies with their associated ecological risk in Pakistan, Environ. Toxicol. Pharmacol., 52 (2017) 14–20.
  3. A. Rusu, G. Hancu, V. Uivaroşi, Fluoroquinolone pollution of food, water and soil, and bacterial resistance, Environ. Chem. Lett., 13 (2015) 21–36.
  4. C. Bouki, D. Venieri, E. Diamadopoulos, Detection and fate of antibiotic resistant bacteria in wastewater treatment plant: a review, Ecotoxicol. Environ. Saf., 91 (2013) 1–9.
  5. K. Kummerer, The presence of pharmaceuticals in the environment due to human use – present knowledge and future challenges, J. Environ. Manage., 90 (2009a) 2354–2366.
  6. K.D. Brown, J. Kulis, B. Thomson, T.H. Chapman, D.B. Mawhinney, Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico, Sci. Total Environ., 366 (2006) 772–783.
  7. C.B. Patneedi, K.D. Prasadu, Impact of pharmaceutical wastes on human life and environment, Rasayan J. Chem., 8 (2015) 67–70.
  8. S. Hussain, M. Naeem, M.N. Chaudhry, Estimation of residual antibiotics in pharmaceutical effluents and their fate in affected areas, Pol. J. Environ. Stud., 25 (2016) 607–614.
  9. O. Cardoso, J. Porcher, W. Sanchez, Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: review of evidence and need for knowledge, Chemosphere, 115 (2014) 20–30.
  10. M. Ashfaq, K.N. Khan, M. Saif-Ur-Rehman, G. Mustafa, M.F. Nazar, Q. Sun, J. Iqbal, S.I. Mulla, C.P. Yu, Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan, Ecotoxicol. Environ. Saf., 136 (2017) 31–39.
  11. M.S. Rehman, N. Rashid, M. Ashfaq, A. Saif, N. Ahmad, J.I. Han, Global risk of pharmaceutical contamination from highly populated developing countries, Chemosphere, 138 (2015) 1045–1055.
  12. F. Rezaei, P. Vanraes, A. Nikiforov, R. Morent, N.D. Geyter, Applications of plasma-liquid systems: a review, Materials, 12 (2019) 1–69, doi: 10.3390/ma12172751.
  13. I. Tariq, M. Masood, M.A. Khan, K. Rashid, Z. Rehmat, M. Hasan, M. Zaka-ul-Islam, Atmospheric pressure microplasma assisted growth of silver nanosheets and their inhibitory action against bacteria of clinical interest, Mater. Res. Express, 3 (2016) 125019, doi: 10.1088/2053-1591/3/12/125019.
  14. D. Mariotti, R.M. Sankaran, Topical review: micro plasmas for nanomaterials synthesis, J. Phys. D: Appl. Phys., 43 (2010) 323001, doi: 10.1088/0022-3727/43/32/323001.
  15. D. Mariotti, R.M. Sankaran, Perspectives on atmospheric pressure plasmas for nanofabrication, J. Phys. D: Appl. Phys., 44 (2011) 174023, doi: 10.1088/0022-3727/44/17/174023.
  16. B. Jiang, J. Zheng, S. Qiu, M. Wu, Q. Zhang, Z. Yan, Q. Xue, Review on electrical discharge plasma technology for wastewater remediation, Chem. Eng. J., 236 (2014) 348–368.
  17. X. Jin, X. Wang, Y. Wang, H. Ren, Oxidative degradation of amoxicillin in aqueous solution with contact glow discharge electrolysis, Ind. Eng. Chem. Res., 52 (2013) 9726–9730.
  18. G. Jinzhang, W. Aixing, F. Yan, W. Jianlin, M.A. Dongping, G. Xiao, L. Yan, Y. Wu, Analysis of energetic species caused by contact glow discharge electrolysis in aqueous solution, Plasma Sci. Technol., 10 (2008) 30–38, doi: 10.1088/1009-0630/10/1/07.
  19. Y. Baloul, H. Rabat, D. Hong, S. Chuon, O. Aubry, Preliminary study of a non-thermal plasma for the degradation of the paracetamol residue in water, Int. J. Plasma Environ. Sci. Technol., 10 (2016) 102–107.
  20. C. Lacey, G. McMahon, J. Bones, L. Barron, A. Morrissey, J.M. Tobin, An LC–MS method for the determination of pharmaceutical compounds in wastewater treatment plant influent and effluent samples, Talanta, 75 (2008) 1089–1097.
  21. M. Petrovic, D. Barcelo, Analysis, fate and removal of pharmaceuticals in the water cycle, Wilson Wilsons, 50 (2007) 1–564.
  22. X. Yu, J. Zuo, R. Li, L. Gan, Z. Li, F. Zhang, A combined evaluation of the characteristics and acute toxicity of antibiotic wastewater, Ecotoxicol. Environ. Saf., 106 (2014) 40–45.
  23. L. Hu, P.M. Flanders, P.L. Miller, T.J. Strathmann, Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis, Water Res., 41 (2007) 2612–2626.
  24. X. Wang, M. Zhou, X. Jin, Application of glow discharge plasma for wastewater treatment, Electrochim. Acta, 83 (2012) 501–512.
  25. C.-T. Kao, T.H. Huang, Variations in surface characteristics and corrosion behaviour of metal brackets and wires in different electrolyte solutions, Eur. J. Orthod., 32 (2010) 555–560.
  26. T. Paul, M.C. Dodd, T.J. Strathmann, Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity, Water Res., 44 (2010) 3121–3132.
  27. L. Boudriche, I. Michael-Kordatou, S. Michael, P. Karaoliac, D. Fatta-Kassinos, UV-C-driven oxidation of ciprofloxacin in conventionally treated urban wastewater: degradation kinetics, ecotoxicity and phytotoxicity assessment and inactivation of ciprofloxacin-resistant Escherichia coli, J. Chem. Technol. Biotechnol., 92 (2017) 1380–1388.
  28. H. Khan, N. Ahmad, A. Yasar, R. Shahid, Advanced oxidative decolorization of Red Cl-5B: effects of dye concentration, process optimization and reaction kinetics, Pol. J. Environ. Stud., 19 (2010) 83–92.
  29. F. Yu, S. Sun, S. Han, J. Zheng, J. Ma, Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions, Chem. Eng. J., 285 (2016) 588–595.
  30. S.K. Mondal, A.K. Saha, A. Sinha, Removal of ciprofloxacin using modified advanced oxidation processes: kinetics, pathways and process optimization, J. Cleaner Prod., 171 (2018) 1203–1214.
  31. N. Khoshnamvand, F.K. Mostafapour, A. Mohammadi, M. Faraji, Response surface methodology (RSM) modeling to improve removal of ciprofloxacin from aqueous solutions in photocatalytic process using copper oxide nanoparticles (CuO/ UV), AMB Express, 8 (2018) 1–9, doi: 10.1186/s13568-018-0579-2.
  32. T. An, H. Yang, G. Li, W. Song, W.J. Cooper, X. Nie, Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water, Appl. Catal., B, 94 (2010) 288–294.
  33. J. Liu, B. He, Q. Chen, J. Li, Q. Xiong, G. Yue, X. Zhang, S. Yang, H. Liu, Q.H. Liu, Direct synthesis of hydrogen peroxide from plasma-water interactions, Sci. Rep., 6 (2016) 1–7, doi: 10.1038/ srep38454.
  34. N. Saksono, B.P. Adiwidodo, E.F. Karamah, S. Kartohardjono, Contact glow discharge electrolysis system for treatment of wastewater containing ammonia, J. Environ. Sci. Technol., 6 (2013) 41–49.
  35. N. Saksono, I. Nugraha, I.A. Febiyanti, Hydroxyl radical production on contact glow discharge electrolysis for degradation of linear alkylbenzene sulfonate, Environ. Prog. Sustainable Energy, 35 (2016) 962–968.
  36. B.H. Hameed, T.W. Lee, Degradation of malachite green in aqueous solution by Fenton process, J. Hazard. Mater., 164 (2009) 468–472.
  37. J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol., 36 (2006) 1–84.
  38. I. Sirés, J.A. Garrido, R.M. Rodríguez, E. Brillas, N. Oturan, M.A. Oturan, Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chloroprene, Appl. Catal., B, 72 (2007) 382–394.
  39. M. Hijosa-Valsero, R. Molina, A. Montràs, M. Müller, J.M. Bayona, Decontamination of waterborne chemical pollutants by using atmospheric pressure nonthermal plasma: a review, Environ. Technol. Rev., 3 (2014) 71–91.