References
- P.K. Mutiyar, A.K. Mittal, Risk assessment of antibiotic
residues in different water matrices in India: key issues and
challenges, Environ. Sci. Pollut. Res., 21 (2014) 7723–7736.
- L. Riaz, T. Mahmood, A. Kamal, M. Shafqat, A. Rashid,
Industrial release of fluoroquinolones (FQs) in the wastewater
bodies with their associated ecological risk in Pakistan,
Environ. Toxicol. Pharmacol., 52 (2017) 14–20.
- A. Rusu, G. Hancu, V. Uivaroşi, Fluoroquinolone pollution of
food, water and soil, and bacterial resistance, Environ. Chem.
Lett., 13 (2015) 21–36.
- C. Bouki, D. Venieri, E. Diamadopoulos, Detection and fate
of antibiotic resistant bacteria in wastewater treatment plant:
a review, Ecotoxicol. Environ. Saf., 91 (2013) 1–9.
- K. Kummerer, The presence of pharmaceuticals in the
environment due to human use – present knowledge and
future challenges, J. Environ. Manage., 90 (2009a) 2354–2366.
- K.D. Brown, J. Kulis, B. Thomson, T.H. Chapman, D.B. Mawhinney,
Occurrence of antibiotics in hospital, residential, and
dairy effluent, municipal wastewater, and the Rio Grande in
New Mexico, Sci. Total Environ., 366 (2006) 772–783.
- C.B. Patneedi, K.D. Prasadu, Impact of pharmaceutical wastes
on human life and environment, Rasayan J. Chem., 8 (2015)
67–70.
- S. Hussain, M. Naeem, M.N. Chaudhry, Estimation of residual
antibiotics in pharmaceutical effluents and their fate in affected
areas, Pol. J. Environ. Stud., 25 (2016) 607–614.
- O. Cardoso, J. Porcher, W. Sanchez, Factory-discharged
pharmaceuticals could be a relevant source of aquatic
environment contamination: review of evidence and need for
knowledge, Chemosphere, 115 (2014) 20–30.
- M. Ashfaq, K.N. Khan, M. Saif-Ur-Rehman, G. Mustafa,
M.F. Nazar, Q. Sun, J. Iqbal, S.I. Mulla, C.P. Yu, Ecological risk
assessment of pharmaceuticals in the receiving environment
of pharmaceutical wastewater in Pakistan, Ecotoxicol.
Environ. Saf., 136 (2017) 31–39.
- M.S. Rehman, N. Rashid, M. Ashfaq, A. Saif, N. Ahmad,
J.I. Han, Global risk of pharmaceutical contamination from
highly populated developing countries, Chemosphere,
138 (2015) 1045–1055.
- F. Rezaei, P. Vanraes, A. Nikiforov, R. Morent, N.D. Geyter,
Applications of plasma-liquid systems: a review, Materials,
12 (2019) 1–69, doi: 10.3390/ma12172751.
- I. Tariq, M. Masood, M.A. Khan, K. Rashid, Z. Rehmat,
M. Hasan, M. Zaka-ul-Islam, Atmospheric pressure
microplasma assisted growth of silver nanosheets and their
inhibitory action against bacteria of clinical interest, Mater. Res.
Express, 3 (2016) 125019, doi: 10.1088/2053-1591/3/12/125019.
- D. Mariotti, R.M. Sankaran, Topical review: micro plasmas
for nanomaterials synthesis, J. Phys. D: Appl. Phys., 43 (2010)
323001, doi: 10.1088/0022-3727/43/32/323001.
- D. Mariotti, R.M. Sankaran, Perspectives on atmospheric
pressure plasmas for nanofabrication, J. Phys. D: Appl.
Phys., 44 (2011) 174023, doi: 10.1088/0022-3727/44/17/174023.
- B. Jiang, J. Zheng, S. Qiu, M. Wu, Q. Zhang, Z. Yan, Q. Xue,
Review on electrical discharge plasma technology for
wastewater remediation, Chem. Eng. J., 236 (2014) 348–368.
- X. Jin, X. Wang, Y. Wang, H. Ren, Oxidative degradation of
amoxicillin in aqueous solution with contact glow discharge
electrolysis, Ind. Eng. Chem. Res., 52 (2013) 9726–9730.
- G. Jinzhang, W. Aixing, F. Yan, W. Jianlin, M.A. Dongping,
G. Xiao, L. Yan, Y. Wu, Analysis of energetic species caused by
contact glow discharge electrolysis in aqueous solution, Plasma
Sci. Technol., 10 (2008) 30–38, doi: 10.1088/1009-0630/10/1/07.
- Y. Baloul, H. Rabat, D. Hong, S. Chuon, O. Aubry, Preliminary
study of a non-thermal plasma for the degradation of the
paracetamol residue in water, Int. J. Plasma Environ. Sci.
Technol., 10 (2016) 102–107.
- C. Lacey, G. McMahon, J. Bones, L. Barron, A. Morrissey,
J.M. Tobin, An LC–MS method for the determination of
pharmaceutical compounds in wastewater treatment plant
influent and effluent samples, Talanta, 75 (2008) 1089–1097.
- M. Petrovic, D. Barcelo, Analysis, fate and removal of
pharmaceuticals in the water cycle, Wilson Wilsons, 50 (2007)
1–564.
- X. Yu, J. Zuo, R. Li, L. Gan, Z. Li, F. Zhang, A combined
evaluation of the characteristics and acute toxicity of antibiotic
wastewater, Ecotoxicol. Environ. Saf., 106 (2014) 40–45.
- L. Hu, P.M. Flanders, P.L. Miller, T.J. Strathmann, Oxidation
of sulfamethoxazole and related antimicrobial agents by TiO2
photocatalysis, Water Res., 41 (2007) 2612–2626.
- X. Wang, M. Zhou, X. Jin, Application of glow discharge plasma
for wastewater treatment, Electrochim. Acta, 83 (2012) 501–512.
- C.-T. Kao, T.H. Huang, Variations in surface characteristics and
corrosion behaviour of metal brackets and wires in different
electrolyte solutions, Eur. J. Orthod., 32 (2010) 555–560.
- T. Paul, M.C. Dodd, T.J. Strathmann, Photolytic and
photocatalytic decomposition of aqueous ciprofloxacin:
transformation products and residual antibacterial activity,
Water Res., 44 (2010) 3121–3132.
- L. Boudriche, I. Michael-Kordatou, S. Michael, P. Karaoliac,
D. Fatta-Kassinos, UV-C-driven oxidation of ciprofloxacin in
conventionally treated urban wastewater: degradation kinetics,
ecotoxicity and phytotoxicity assessment and inactivation
of ciprofloxacin-resistant Escherichia coli, J. Chem. Technol.
Biotechnol., 92 (2017) 1380–1388.
- H. Khan, N. Ahmad, A. Yasar, R. Shahid, Advanced oxidative
decolorization of Red Cl-5B: effects of dye concentration,
process optimization and reaction kinetics, Pol. J. Environ.
Stud., 19 (2010) 83–92.
- F. Yu, S. Sun, S. Han, J. Zheng, J. Ma, Adsorption removal of
ciprofloxacin by multi-walled carbon nanotubes with different
oxygen contents from aqueous solutions, Chem. Eng. J.,
285 (2016) 588–595.
- S.K. Mondal, A.K. Saha, A. Sinha, Removal of ciprofloxacin
using modified advanced oxidation processes: kinetics,
pathways and process optimization, J. Cleaner Prod., 171 (2018)
1203–1214.
- N. Khoshnamvand, F.K. Mostafapour, A. Mohammadi,
M. Faraji, Response surface methodology (RSM) modeling to
improve removal of ciprofloxacin from aqueous solutions in
photocatalytic process using copper oxide nanoparticles (CuO/
UV), AMB Express, 8 (2018) 1–9, doi: 10.1186/s13568-018-0579-2.
- T. An, H. Yang, G. Li, W. Song, W.J. Cooper, X. Nie, Kinetics
and mechanism of advanced oxidation processes (AOPs) in
degradation of ciprofloxacin in water, Appl. Catal., B, 94 (2010)
288–294.
- J. Liu, B. He, Q. Chen, J. Li, Q. Xiong, G. Yue, X. Zhang, S. Yang,
H. Liu, Q.H. Liu, Direct synthesis of hydrogen peroxide from
plasma-water interactions, Sci. Rep., 6 (2016) 1–7, doi: 10.1038/
srep38454.
- N. Saksono, B.P. Adiwidodo, E.F. Karamah, S. Kartohardjono,
Contact glow discharge electrolysis system for treatment of
wastewater containing ammonia, J. Environ. Sci. Technol.,
6 (2013) 41–49.
- N. Saksono, I. Nugraha, I.A. Febiyanti, Hydroxyl radical
production on contact glow discharge electrolysis for
degradation of linear alkylbenzene sulfonate, Environ. Prog.
Sustainable Energy, 35 (2016) 962–968.
- B.H. Hameed, T.W. Lee, Degradation of malachite green
in aqueous solution by Fenton process, J. Hazard. Mater.,
164 (2009) 468–472.
- J.J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation
processes for organic contaminant destruction based on the
Fenton reaction and related chemistry, Crit. Rev. Environ.
Sci. Technol., 36 (2006) 1–84.
- I. Sirés, J.A. Garrido, R.M. Rodríguez, E. Brillas, N. Oturan,
M.A. Oturan, Catalytic behavior of the Fe3+/Fe2+ system in the
electro-Fenton degradation of the antimicrobial chloroprene,
Appl. Catal., B, 72 (2007) 382–394.
- M. Hijosa-Valsero, R. Molina, A. Montràs, M. Müller,
J.M. Bayona, Decontamination of waterborne chemical
pollutants by using atmospheric pressure nonthermal plasma:
a review, Environ. Technol. Rev., 3 (2014) 71–91.