References

  1. H. Gökçekuş, Special issue on the 2nd International Conference on Water Problems in the Mediterranean Countries (WPMC) 6–10 May 2019, Lefkosa, Turkish Republic of Northern Cyprus, 2020, pp. 236–236.
  2. M. Triwiswara, C.-G. Lee, J.-K. Moon, S.-J. Park, Adsorption of triclosan from aqueous solution onto char derived from palm kernel shell, Desal. Water Treat., 177 (2020) 71–79.
  3. H. Hashtroudi, Treatment of lead contaminated water using lupin straw: adsorption mechanism, isotherms and kinetics studies, Desal. Water Treat., 182 (2020) 155–167.
  4. B. Ghiasi, M.H. Niksokhan, A.M. Mazdeh, Co-transport of chromium(VI) and bentonite colloidal particles in watersaturated porous media: effect of colloid concentration, sand gradation, and flow velocity, J. Contam. Hydrol., 234 (2020) 103682, doi: 10.1016/j.jconhyd.2020.103682.
  5. B. Liao, Y.Y. Li, Y. Guan, Y.H. Liu, Q.Q. Huang, C.W. Ye, G. Liu, F. Xu, Insight into barrier mechanism of fly ashbentonite blocking wall for lead pollution in groundwater, J. Hydrol., 590 (2020) 125444, doi: 10.1016/j.jhydrol.2020. 125444.
  6. L. Peng, B. Chen, Y.X. Zhao, Quantitative characterization and comparsion of bentonite microstructure by small angle X-ray scattering and nitrogen adsorption, Constr. Build. Mater., 262 (2020) 120863, doi: 10.1016/j.conbuildmat.2020.120863.
  7. R.F. Resende, P.V. Brandão Leal, D.H. Pereira, Z.M. Magriotis, Removal of fatty acid by natural and modified bentonites: elucidation of adsorption mechanism, Colloids Surf., A, 605 (2020) 125340, doi: 10.1016/j.colsurfa.2020.125340.
  8. S. Al-Marri, S.S. AlQuzweeni, K.S. Hashim, R. Al Khaddar, P. Kot, R.S. Al Kizwini, S.L. Zubaidi, Z.S. Al-Khafaji, Ultrasonic-electrocoagulation method for nitrate removal from water, Mater. Sci. Eng., 888 (2020) 012073.
  9. M. AL-Housni, A.H. Hussein, D. Yeboah, R. Al Khaddar, B. Abdulhadi, A.A. Shubbar, K.S. Hashim, Electrochemical removal of nitrate from wastewater, Mater. Sci. Eng., 888 (2020) 012037.
  10. B.M. Butler, J. Palarea-Albaladejo, K.D. Shepherd, S. Hillier, Mineral–nutrient relationships in African soils assessed using cluster analysis of X-ray powder diffraction patterns and compositional methods, Geodermal, 375 (2020) 114474, doi: 10.1016/j.geoderma.2020.114474.
  11. X.M. Ke, Z.F. Wu, J.Z. Lin, D.K. Zhang, A rapid analytical method for the specific surface area of amorphous SiO2 based on X-ray diffraction, J. Non-Cryst. Solids, 531 (2020) 119841, doi: 10.1016/j.jnoncrysol.2019.119841.
  12. O. Sivrikaya, B. Uzal, Y.E. Ozturk, Practical charts to identify the predominant clay mineral based on oxide composition of clayey soils, Appl. Clay Sci., 135 (2017) 532–537.
  13. X. Zhou, D. Liu, H.L. Bu, L.L. Deng, H.M. Liu, P. Yuan, P.X. Du, H.Z. Song, XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: a critical review, Solid Earth Sci., 3 (2018) 16–29.
  14. J. Środoń, Chapter 12.2 – Identification and Quantitative Analysis of Clay Minerals, in: Developments in Clay Science, Elsevier, Amsterdam, 2006, pp. 765–787.
  15. H.B. Deng, Y. Wu, I. Shahzadi, R. Liu, Y. Yi, D. Li, S.Y. Cao, C. Wang, J. Huang, H.Y. Su, Chapter 8 – Nanomaterials From Mixed-Layer Clay Minerals: Structure, Properties, and Functional Applications, A.Q. Wang, W.B. Wang, Eds., Nanomaterials from Clay Minerals: A New Approach to Green Functional Materials Micro and Nano Technologies, 2019, pp. 365–413.
  16. H.Q. Wang, J.T. Hu, W. Wan, H.Q. Gui, F.H. Qin, F.J. Yu, J.G. Liu, L. Lü, A wide dynamic range and high resolution all-fiber-optic turbidity measurement system based on single photon detection technique, Measurement, 134 (2019) 820–824.
  17. J.W. Li, Y.F. Tong, L. Guan, S.F. Wu, D.B. Li, A turbidity compensation method for COD measurements by UV–vis spectroscopy, Optik, 186 (2019) 129–136.
  18. A. Rymszewicz, J.J. O’Sullivan, M. Bruen, J.N. Turner, D.M. Lawler, E. Conroy, M. Kelly-Quinn, Measurement differences between turbidity instruments, and their implications for suspended sediment concentration and load calculations: a sensor inter-comparison study, J. Environ. Manage., 199 (2017) 99–108.
  19. L. Yang, J. Wang, S.S. Wang, Y.P. Liao, Y. Li, A new method to improve the sensitivity of nitrate concentration measurement in seawater based on dispersion turning point, Optik, 205 (2020) 164202, doi: 10.1016/j.ijleo.2020.164202.
  20. J. Goupy, Methods for Experimental Design: Principles and Applications for Physicists and Chemists, Elsevier, Amsterdam, 1993, p. 449.
  21. J. Goupy, Introduction at the Design of Experiments, with Applications, 5th ed., Dunod Edition, Paris, 2005
  22. A. Djeffal, S.E. Bendaoudi, M. Bounazef, E.A.A. Bedia, Behavioural modelling of lips seal made with polytetrafluoroethylene enriched by glass fibers, Modell. Numer. Simul. Mater. Sci., 3 (2013) 170–174.