References

  1. G. Gude, Emerging Technologies for Sustainable Desalination Handbook, Elsevier, London, UK, 2018, pp. 558.
  2. A. Kargari, M.M.A. Shirazi, Solar-Assisted Membrane Distillation: Water Desalination, in: Encyclopedia of Energy Engineering and Technology, 2nd ed., CRC Press, 2014, pp. 2095–2109.
  3. S. Yarlagadda, L.M. Camacho, V.G. Gude, Z. Wei, S. Deng, Membrane Distillation for Desalination and Other Separations Recent, Pat. Chem. Eng., 2 (2009) 128–158.
  4. J. Koschikowski, W. Marcel, M. Rommel, Solar thermal driven desalination plants based on membrane distillation, Desalination, 156 (2003) 295–304.
  5. Z. Triki, M.N. Bouaziz, M. Boumaza, Performance and cost evaluation of an autonomous solar vacuum membrane distillation desalination plant, Desal. Water Treat., 73 (2017) 107–120.
  6. G. Tsatsaronis, Combination of Exergetic and Economic Analysis in Energy-Conversion Processes, Proceedings of the European Congress on Energy Economics and Management in Industry, Algarve, Portugal, April 2–5, England, Oxford, Pergamon Press, Vol. 1, 1984, pp. 151–157.
  7. A. Bejan, G. Tsatsaronis, M. Moran, Thermal Design and Optimization, John Wiley, New York, USA, 1996.
  8. G. Tsatsaronis, F. Cziesla, Thermoeconomics, In: R. Meyers, Ed., Encyclopaedia of Physical Science and Technology, Vol. 16, Academic Press, New York, 2002, pp. 659–680.
  9. R. Kumar, A critical review on energy, exergy, exergoeconomic and economic (4–E) analysis of thermal power plants, Eng. Sci. Technol. Int. J., 20 (2017) 283–292.
  10. A. Abusoglu, M. Kanoglu, Exergoeconomic analysis and optimization of combined heat and power production: a review, Renewable Sustainable Energy Rev., 13 (2009) 2295–2308.
  11. R.B. Evans, Thermoeconomic Isolation and Essergy Analysis, Energy, 5 (1980) 805–821.
  12. Y.M. El-Sayed, R.A. Gaggioli, A critical review of second law costing methods. 1. Background and algebraic procedures, J. Energy Resour. Technol., 111 (1989) 1–7.
  13. R.A. Gaggioli, Y.M. El-Sayed, A critical review of second law costing methods. 2. Calculus procedures, J. Energy Resour. Technol., 111 (1989) 8–15.
  14. M. Tribus, R.B. Evans, The Thermoeconomics of Seawater Conversion, University of California, Los Angeles, Report No. 62–63, August 1962.
  15. Y. El-Sayed, R.L. Evans, Thermoeconomics and the design of heat systems, J. Eng. Gas Turb. Power, 92 (1970) 27–35.
  16. G.M. Reistad, Availability: Concepts and Applications, Ph.D. Dissertation, University of Wisconsin, Madison, USA, 1970.
  17. R.A. Gaggioli, Thermodynamics and Non-equilibrium System, Ph.D. Dissertation, University of Wisconsin, Madison, USA, 1961.
  18. G. Tsatsaronis, Combination of Exergetic and Economic Analysis in Energy-Conversion Processes, Proceedings, European Congress, Energy Economics and Management in Industry, Algarve, Portugal, Pergamon Press, Oxford, England, Vol. 1, 1984, pp. 151–157.
  19. G. Tsatsaronis, M. Winhold, Exergoeconomic Analysis and Optimization of Energy Conversion Plants. Part I: A New General Methodology; Part II: Analysis of a Coal – Fired Steam Power Plant, Energy, 10 (1985) 69–94.
  20. A.M. Rosen, Exergy and Economics: Is Exergy Profitable?, Exergy, 2 (2002) 218–220.
  21. R. Rivero, M. Garcia, J. Urquiza, Simulation, Exergy Analysis and Application of Diabatic Distillation to Tertiary Amyl Methyl Ether Production Unit of a Crude Oil Refinery, Energy, 29 (2004) 467–489.
  22. A. Valero, M.A. Lozano, M. Munoz, A General Theory of Exergy Saving I, II and III. ASME Books, New York, USA, 1986, pp. 1–21.
  23. M.A. Lozano, A. Valero, Theory of the exergetic cost, Energy, 18 (1993) 939–960.
  24. B. Erlach, L. Serra, A. Valero, Structural theory as standard for thermoeconomics, Energy Convers. Manage., 40 (1999) 1627–1649.
  25. A. Lazzaretto, G. Tsatsaronis, SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems, Energy, 31 (2006) 1257–1289.
  26. C. Torres, A. Valero, V. Rangel, A. Zaleta, On the cost formation process of the residues, Energy, 33 (2008) 144–152.
  27. S.M. Seyyedi, H. Ajam, S. Farahat, A new criterion for the allocation of residues cost in exergoeconomic analysis of energy systems, Energy, 35 (2010) 3474–3482.
  28. A. Piacentino, E. Cardona, Scope-oriented thermoeconomic analysis of energy systems. Part II: formation structure of optimality for robust design, Appl. Energy, 87 (2010) 957–970.
  29. A. Piacentino, F. Cardona, Scope-oriented thermoeconomic analysis of energy systems. Part I: Looking for a non-postulated cost accounting for the dissipative devices of a vapour compression chiller. Is it feasible?, Appl. Energy, 87 (2010) 943–956.
  30. A. Banerjee, M.J. Tierney, R.N. Thorpe, Thermoeconomics, cost benefit analysis, and a novel way of dealing with revenue generating dissipative units applied to candidate decentralised energy systems for Indian rural villages, Energy, 43 (2012) 477–488.
  31. D.M. Paulus, G. Tsatsaronis, Auxiliary equations for the determination of specific exergy revenues, Energy, 31 (2006) 3235–3247.
  32. E. Cardona, A. Piacentino, A new approach to exergoeconomic analysis and design of variable demand energy systems, Energy, 31 (2006) 490–515.
  33. S. Kelly, Energy Systems Improvement Based on Endogenous and Exogenous Exergy Destruction, Technische Universit at Berlin, Berlin/Heidelberg, Germany, 2008.
  34. S. Kelly, G. Tsatsaronis, T. Morosuk, Advanced exergetic analysis: approaches for splitting the exergy destruction into endogenous and exogenous parts, Energy, 34 (2009) 384–391.
  35. G. Tsatsaronis, T. Morosuk, A General Exergy-Based Method for Combining a Cost Analysis with an Environmental Impact Analysis: Part I–Theoretical Development, AProceedings of the ASME International Mechanical Engineering Congress and Exposition, October 31–November 6, Boston, Massachusetts, USA, Vol. 8, 2008, pp. 453–462.
  36. R. Gaggioli, M. Reini, Panel I: connecting 2nd law analysis with economics, ecology and energy policy, Entropy, 16 (2014) 3903–3938.
  37. J. Rashidi, C.K. Yoo, Exergetic and exergoeconomic studies of two highly efficient power-cooling cogeneration systems based on the Kalina and absorption refrigeration cycles, Appl. Therm. Eng., 124 (2017) 1023–1037.
  38. A.Z. Sahin, A. Al-Sharafi, B.S. Yilbas, A. Khaliq, Overall performance assessment of a combined cycle power plant: an exergo-economic analysis, Energy Convers. Manage., 116 (2016) 91–100.
  39. A. Ahmadzadeh, M.R. Salimpour, A. Sedaghat, Thermal and exergoeconomic analysis of a novel solar driven combined power and ejector refrigeration (CPER) system, Int. J. Refrig., 83 (2017) 143–156.
  40. M. Baghsheikhi, H. Sayyaadi, Real-time exergoeconomic optimization of a steam power plant using a soft computingfuzzy inference system, Energy, 114 (2016) 868–884.
  41. L. Wang, Y. Yang, C. Dong, Z. Yang, G. Xu, L. Wu, Exergoeconomic evaluation of a modern ultra-supercritical power plant, Energies, 5 (2012) 3381–3397.
  42. L. Meyer, J. Buchgeister, L. Schebek, G. Tsatsaronis, Formation of Environmental Impacts in Energy Conversion Processes revealed by a novel Exergoenvironmental Analysis, Proc. ASME IMECE 2007, Nov. 11–15, 2007, Seattle, WA, USA. IMECE2007-42210.
  43. L. Meyer, G. Tsatsaronis, J. Buchgeister, L. Schebek, Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems, Energy, 34 (2009) 75–89.
  44. J. Buchgeister, Exergoenvironmental analysis - a new approach to support design for environment of chemical processes?, Chem. Eng. Technol., 33 (2010) 593–602.
  45. F. Petrakopoulou, A. Boyano, M. Cabrera, G. Tsatsaronis, Exergoeconomic and exergoenvironmental analyses of a combined cycle power plant with chemical looping technology, Int. J. Greenhouse Gas Control, 3 (2011) 475–482.
  46. Z. Zhao, A Computer Program for the Exergoeconomic Analysis of Energy Conversion Plants, Ph.D. Dissertation, Technical University of Berlin, 2015, 139 pages.
  47. R. Miladi, N. Frikha, A. Kheiri, S. Gabsi, Energetic performance analysis of seawater desalination with a solar membrane distillation, Energy Convers. Manage., 185 (2019) 143–154.
  48. N. Frikha, R. Matlaya, B. Chaouachi, S. Gabsi, Simulation of an autonomous solar vacuum membrane distillation for seawater desalination, Desal. Water Treat., 52 (2013) 1725–1734.
  49. S. Ben Abdallah, N. Frikha, S. Gabsi, Design of an autonomous solar desalination plant using vacuum membrane distillation, the MEDINA project, Chem. Eng. Res. Des., 91 (2013) 2782–2788.
  50. G. Bonforte, J. Buchgeister, G. Manfrida, K. Petela, Exergoeconomic and exergoenvironmental analysis of an integrated solar gas turbine/combined cycle power plant, Energy, 156 (2018) 352–359.
  51. R. Miladi, N. Frikha, S. Gabsi, Exergy analysis of a solarpowered vacuum membrane distillation unit using two models, Energy, 120 (2017) 872–883.
  52. M. Khayet, T. Matsuura, Membrane Distillation: Principles and Applications, Elsevier, The Netherlands, 2011, 512 pages.
  53. A. Baghernejad, M. Yaghoubi, Multi-objective exergoeconomic optimization of an integrated solar combined cycle system using evolutionary algorithms, Int. J. Energy Res., 35 (2011) 601–615.
  54. A. Baghernejad, M. Yaghoubi, Exergoeconomic Analysis and Optimization of an Integrated Solar Combined Cycle System (ISCCS) Using Genetic Algorithm, Energy Convers. Manage., 52 (2011) 2193–2203.
  55. A. Boyano, T. Morosuk, A.M. Blanco-Marigota, G. Tsatsaronis, Conventional and exergoenvironmental analysis of steam methane reforming reactor for hydrogen production, J. Cleaner Prod., 20 (2012) 152–160.
  56. Simapro (pRé Consultants). Available: http://www.presustainability. com/Simapro.
  57. S. Suman, M.K. Khan, M. Pathak, Performance enhancement of solar collectors – a review, Renewable Sustainable Energy Rev., 49 (2015) 192–210.
  58. N. Benz, T. Beikircher, High efficiency evacuated flat-plate solar collector for process steam production, Sol. Energy, 65 (1999) 111–118.
  59. T. Beikircher, M. Möckl, P. Osgyan, G. Streib, Advanced solar flat plate collectors with full area absorber, front side film and rear side vacuum super insulation, Sol. Energy Mater. Solar Cells, 141 (2015) 308–406.
  60. M.E. Zayed, J. Zhao, A.H. Elsheikh, Y. Du, F.A. Hammad, L. Ma, A.E. Kabeel, S. Sadek, Performance augmentation of flat plate solar water collector using phase change materials and nanocomposite phase change materials: a review, Process Saf. Environ. Prot., 128 (2019) 135–157.
  61. S.A. Sakhaei, M.S. Valipour, Performance enhancement analysis of The flat plate collectors: a comprehensive review, Renewable Sustainable Energy Rev., 102 (2019) 186–204.
  62. K. Farhana, K. Kadirgama, M.M. Rahman, D. Ramasamy, M.M. Noor, G. Najafi, M. Samykano, A.S.F. Mahamude, Improvement in the performance of solar collectors with nanofluids — a state-of the-art review, Nano-Struct. Nano- Objects, 18 (2019) 1–21.
  63. J. Hu, G. Zhang, Performance improvement of solar air collector based on airflow reorganization: a review, Appl. Therm. Eng., 155 (2019) 592–611.
  64. R. Chauhan, T. Singh, N.S. Thakur, N. Kumar, R. Kumar, A. Kumar, Heat transfer augmentation in solar thermal collectors using impinging air jets: a comprehensive review, Renewable Sustainable Energy Rev., 82 (2018) 3179–3190.
  65. R. Moss, S. Shire, P. Henshall, F. Arya, P. Eames, T. Hyde, Performance of evacuated flat plate solar thermal collectors, Therm. Sci. Eng. Prog., 8 (2018) 296–306.
  66. F.S. Javadi, R. Saidur, M. Kamalisarvestani, Investigating performance improvement of solar collectors by using nanofluids, Renewable Sustainable Energy Rev., 28 (2013) 232–245.
  67. A.N. Al-Shamani, M.H. Yazdi, M.A. Alghoul, A.M. Abed, M.H. Ruslan, S. Mat, K. Sopian, Nanofluids for improved efficiency in cooling solar collectors – a review, Renewable Sustainable Energy Rev., 38 (2014) 348–367.
  68. K.Y. Leong, H.C. Ong, N.H. Amer, M.J. Norazrina, M.S. Risby, K.Z. Ku Ahmad, An overview on current application of nanofluids in solar thermal collector and its challenges, Renewable Sustainable Energy Rev., 53 (2016) 1092–1105.
  69. S.R. Shamshirgaran, M.K. Assadi, V. Badescu, H.H. AlKayiem, Upper limits for the work extraction by nanofluidfilled selective flat-plate solar collectors, Energy, 160 (2018) 875–885.
  70. P. Naphon, Effect of porous media on the performance of the double-pass flat plate solar air heater, Int. Commun. Heat Mass Transf., 32 (2005) 140–150.
  71. K. Sopian, M.A. Alghoul, E.M. Alfegi, M.Y. Sulaiman, E.A. Musa, Evaluation of thermal efficiency of double-pass solar collector with porous–nonporous media, Renewable Energy, 34 (2009) 640–645.
  72. K. Balaji, P. Ganesh Kumar, D. Sakthivadivel, V.S. Vigneswaran, S. Iniyan, Experimental investigation on flat plate solar collector using frictionally engaged thermal performance enhancer in the absorber tube, Renewable Energy, 142 (2009) 62–72.
  73. M.K. Gupta, S.C. Kaushik, Performance evaluation of solar air heater having expanded metal mesh as artificial roughness on absorber plate, Int. J. Therm. Sci., 48 (2009) 1007–1016.
  74. R.H. Martín, J. Pérez-García, A. García, F.J. García-Soto, E. Lopez-Galiana, Simulation of an enhanced flat-plate solar liquid collector with wire-coil insert devices, Sol. Energy, 85 (2011) 455–469.
  75. A. Huertas, J.P. Solano, A. Garcia, R. Herrero-Martín, J. Pérez- García, Tube-side heat transfer enhancement in flat-plate liquid solar collectors with wire coil inserts, Exp. Heat Transf., 30 (2017) 1–10.
  76. L.S. Sundar, M.K. Singh, V. Punnaiah, A.C.M. Sousa, Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts, Renewable Energy, 119 (2018) 820–833.
  77. S.A. Farshad, M. Sheikholeslami, Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis, Renewable Energy, 141 (2019) 246–258.
  78. A. García, R. Herrero-Martin, J.P. Solano, J. P´ erez-García, The role of insert devices on enhancing heat transfer in a flat-plate solar water collector, Appl. Therm. Eng., 132 (2018) 479–489.
  79. P.-C. Huang, C.-C. Chen, H.-Y. Hwang, Thermal enhancement in a flat-plate solar water collector by flow pulsation and metal-foam blocks, Int. J. Heat Mass Transf., 61 (2013) 696–720.
  80. K.T.G. Hollands, Honeycomb devices in flat-plate solar collectors, Sol. Energy, 9 (1965) 159–164.
  81. A.H. Abdullah, H.Z. Abou-Ziyan, A.A. Ghoneim, Thermal performance of flat plate solar collector using various arrangements of compound honeycomb, Energy Convers. Manage., 44 (2003) 3093–3112.
  82. A.A. Ghoneim, Performance optimization of solar collector equipped with different arrangements of square-celled honeycomb, Int. J. Therm. Sci., 44 (2005) 95–105.
  83. M. Fan, S. You, X. Gao, H. Zhang, B. Li, W. Zheng, L. Sun, T. Zhou, A comparative study on the performance of liquid flat-plate solar collector with a new V-corrugated absorber, Energy Convers. Manage., 184 (2019) 235–248.
  84. M.A. Karim, M.N.A. Hawlader, Performance investigation of flat plate, v-corrugated and finned air collectors, Energy, 31 (2006) 452–470.
  85. c D. Dovi´, M. Andrassy, Numerically assisted analysis of flat and corrugated plate solar collectors thermal performances, Sol. Energy, 86 (2012) 2416–2431.
  86. K. Pottler, C.M. Sippel, A. Beck, J. Fricke, Optimized finned absorber geometries for solar air heating collectors, Sol. Energy, 67 (1999) 35–52.
  87. N, Moummi, S. Youcef-Ali, A. Moummi, J.Y. Desmons, Energy analysis of a solar air collector with rows of fins, Renewable Energy, 29 (2004) 2053–2064.
  88. A. Priyam, P. Chand, Effect of wavelength and amplitude on the performance of wavy finned absorber solar air heater, Renewable Energy, 119 (2018) 690–702.
  89. A. Fudholi, K. Sopian, A review of solar air flat plate collector for drying application, Renewable Sustainable Energy Rev., 102 (2019) 333–345.
  90. S. Gorjian, H. Ebadi, F. Calise, A. Shukla, C. Ingrao, A review on recent advancements in performance enhancement techniques for low-temperature solar collectors, Energy Convers. Manage., 222 (2020) 113246.