References
- G. Gude, Emerging Technologies for Sustainable Desalination
Handbook, Elsevier, London, UK, 2018, pp. 558.
- A. Kargari, M.M.A. Shirazi, Solar-Assisted Membrane
Distillation: Water Desalination, in: Encyclopedia of Energy
Engineering and Technology, 2nd ed., CRC Press, 2014,
pp. 2095–2109.
- S. Yarlagadda, L.M. Camacho, V.G. Gude, Z. Wei, S. Deng,
Membrane Distillation for Desalination and Other Separations
Recent, Pat. Chem. Eng., 2 (2009) 128–158.
- J. Koschikowski, W. Marcel, M. Rommel, Solar thermal
driven desalination plants based on membrane distillation,
Desalination, 156 (2003) 295–304.
- Z. Triki, M.N. Bouaziz, M. Boumaza, Performance and cost
evaluation of an autonomous solar vacuum membrane
distillation desalination plant, Desal. Water Treat., 73 (2017)
107–120.
- G. Tsatsaronis, Combination of Exergetic and Economic
Analysis in Energy-Conversion Processes, Proceedings of the
European Congress on Energy Economics and Management
in Industry, Algarve, Portugal, April 2–5, England, Oxford,
Pergamon Press, Vol. 1, 1984, pp. 151–157.
- A. Bejan, G. Tsatsaronis, M. Moran, Thermal Design and
Optimization, John Wiley, New York, USA, 1996.
- G. Tsatsaronis, F. Cziesla, Thermoeconomics, In: R. Meyers,
Ed., Encyclopaedia of Physical Science and Technology,
Vol. 16, Academic Press, New York, 2002, pp. 659–680.
- R. Kumar, A critical review on energy, exergy, exergoeconomic
and economic (4–E) analysis of thermal power plants,
Eng. Sci. Technol. Int. J., 20 (2017) 283–292.
- A. Abusoglu, M. Kanoglu, Exergoeconomic analysis and
optimization of combined heat and power production: a review,
Renewable Sustainable Energy Rev., 13 (2009) 2295–2308.
- R.B. Evans, Thermoeconomic Isolation and Essergy Analysis,
Energy, 5 (1980) 805–821.
- Y.M. El-Sayed, R.A. Gaggioli, A critical review of second law
costing methods. 1. Background and algebraic procedures,
J. Energy Resour. Technol., 111 (1989) 1–7.
- R.A. Gaggioli, Y.M. El-Sayed, A critical review of second law
costing methods. 2. Calculus procedures, J. Energy Resour.
Technol., 111 (1989) 8–15.
- M. Tribus, R.B. Evans, The Thermoeconomics of Seawater
Conversion, University of California, Los Angeles, Report
No. 62–63, August 1962.
- Y. El-Sayed, R.L. Evans, Thermoeconomics and the design of
heat systems, J. Eng. Gas Turb. Power, 92 (1970) 27–35.
- G.M. Reistad, Availability: Concepts and Applications,
Ph.D. Dissertation, University of Wisconsin, Madison, USA,
1970.
- R.A. Gaggioli, Thermodynamics and Non-equilibrium System,
Ph.D. Dissertation, University of Wisconsin, Madison, USA,
1961.
- G. Tsatsaronis, Combination of Exergetic and Economic
Analysis in Energy-Conversion Processes, Proceedings,
European Congress, Energy Economics and Management in
Industry, Algarve, Portugal, Pergamon Press, Oxford, England,
Vol. 1, 1984, pp. 151–157.
- G. Tsatsaronis, M. Winhold, Exergoeconomic Analysis and
Optimization of Energy Conversion Plants. Part I: A New
General Methodology; Part II: Analysis of a Coal – Fired Steam
Power Plant, Energy, 10 (1985) 69–94.
- A.M. Rosen, Exergy and Economics: Is Exergy Profitable?,
Exergy, 2 (2002) 218–220.
- R. Rivero, M. Garcia, J. Urquiza, Simulation, Exergy Analysis
and Application of Diabatic Distillation to Tertiary Amyl
Methyl Ether Production Unit of a Crude Oil Refinery,
Energy, 29 (2004) 467–489.
- A. Valero, M.A. Lozano, M. Munoz, A General Theory of
Exergy Saving I, II and III. ASME Books, New York, USA, 1986,
pp. 1–21.
- M.A. Lozano, A. Valero, Theory of the exergetic cost, Energy,
18 (1993) 939–960.
- B. Erlach, L. Serra, A. Valero, Structural theory as standard
for thermoeconomics, Energy Convers. Manage., 40 (1999)
1627–1649.
- A. Lazzaretto, G. Tsatsaronis, SPECO: A systematic and general
methodology for calculating efficiencies and costs in thermal
systems, Energy, 31 (2006) 1257–1289.
- C. Torres, A. Valero, V. Rangel, A. Zaleta, On the cost formation
process of the residues, Energy, 33 (2008) 144–152.
- S.M. Seyyedi, H. Ajam, S. Farahat, A new criterion for the
allocation of residues cost in exergoeconomic analysis of energy
systems, Energy, 35 (2010) 3474–3482.
- A. Piacentino, E. Cardona, Scope-oriented thermoeconomic
analysis of energy systems. Part II: formation structure of
optimality for robust design, Appl. Energy, 87 (2010) 957–970.
- A. Piacentino, F. Cardona, Scope-oriented thermoeconomic
analysis of energy systems. Part I: Looking for a non-postulated
cost accounting for the dissipative devices of a vapour
compression
chiller. Is it feasible?, Appl. Energy, 87 (2010)
943–956.
- A. Banerjee, M.J. Tierney, R.N. Thorpe, Thermoeconomics,
cost benefit analysis, and a novel way of dealing with revenue
generating dissipative units applied to candidate decentralised
energy systems for Indian rural villages, Energy, 43 (2012)
477–488.
- D.M. Paulus, G. Tsatsaronis, Auxiliary equations for the
determination of specific exergy revenues, Energy, 31 (2006)
3235–3247.
- E. Cardona, A. Piacentino, A new approach to exergoeconomic
analysis and design of variable demand energy systems, Energy,
31 (2006) 490–515.
- S. Kelly, Energy Systems Improvement Based on Endogenous
and Exogenous Exergy Destruction, Technische Universit at
Berlin, Berlin/Heidelberg, Germany, 2008.
- S. Kelly, G. Tsatsaronis, T. Morosuk, Advanced exergetic
analysis: approaches for splitting the exergy destruction into
endogenous and exogenous parts, Energy, 34 (2009) 384–391.
- G. Tsatsaronis, T. Morosuk, A General Exergy-Based Method
for Combining a Cost Analysis with an Environmental Impact
Analysis: Part I–Theoretical Development, AProceedings of the
ASME International Mechanical Engineering Congress and
Exposition, October 31–November 6, Boston, Massachusetts,
USA, Vol. 8, 2008, pp. 453–462.
- R. Gaggioli, M. Reini, Panel I: connecting 2nd law analysis
with economics, ecology and energy policy, Entropy, 16 (2014)
3903–3938.
- J. Rashidi, C.K. Yoo, Exergetic and exergoeconomic studies of
two highly efficient power-cooling cogeneration systems based
on the Kalina and absorption refrigeration cycles, Appl. Therm.
Eng., 124 (2017) 1023–1037.
- A.Z. Sahin, A. Al-Sharafi, B.S. Yilbas, A. Khaliq, Overall
performance assessment of a combined cycle power plant: an
exergo-economic analysis, Energy Convers. Manage., 116 (2016)
91–100.
- A. Ahmadzadeh, M.R. Salimpour, A. Sedaghat, Thermal and
exergoeconomic analysis of a novel solar driven combined
power and ejector refrigeration (CPER) system, Int. J. Refrig.,
83 (2017) 143–156.
- M. Baghsheikhi, H. Sayyaadi, Real-time exergoeconomic
optimization of a steam power plant using a soft computingfuzzy
inference system, Energy, 114 (2016) 868–884.
- L. Wang, Y. Yang, C. Dong, Z. Yang, G. Xu, L. Wu,
Exergoeconomic evaluation of a modern ultra-supercritical
power plant, Energies, 5 (2012) 3381–3397.
- L. Meyer, J. Buchgeister, L. Schebek, G. Tsatsaronis, Formation
of Environmental Impacts in Energy Conversion Processes
revealed by a novel Exergoenvironmental Analysis, Proc.
ASME IMECE 2007, Nov. 11–15, 2007, Seattle, WA, USA.
IMECE2007-42210.
- L. Meyer, G. Tsatsaronis, J. Buchgeister, L. Schebek,
Exergoenvironmental analysis for evaluation of the
environmental impact of energy conversion systems, Energy,
34 (2009) 75–89.
- J. Buchgeister, Exergoenvironmental analysis - a new approach
to support design for environment of chemical processes?,
Chem. Eng. Technol., 33 (2010) 593–602.
- F. Petrakopoulou, A. Boyano, M. Cabrera, G. Tsatsaronis,
Exergoeconomic and exergoenvironmental analyses of a
combined cycle power plant with chemical looping technology,
Int. J. Greenhouse Gas Control, 3 (2011) 475–482.
- Z. Zhao, A Computer Program for the Exergoeconomic
Analysis of Energy Conversion Plants, Ph.D. Dissertation,
Technical University of Berlin, 2015, 139 pages.
- R. Miladi, N. Frikha, A. Kheiri, S. Gabsi, Energetic performance
analysis of seawater desalination with a solar membrane
distillation, Energy Convers. Manage., 185 (2019) 143–154.
- N. Frikha, R. Matlaya, B. Chaouachi, S. Gabsi, Simulation
of an autonomous solar vacuum membrane distillation for
seawater desalination, Desal. Water Treat., 52 (2013) 1725–1734.
- S. Ben Abdallah, N. Frikha, S. Gabsi, Design of an autonomous
solar desalination plant using vacuum membrane distillation,
the MEDINA project, Chem. Eng. Res. Des., 91 (2013)
2782–2788.
- G. Bonforte, J. Buchgeister, G. Manfrida, K. Petela, Exergoeconomic
and exergoenvironmental analysis of an integrated
solar gas turbine/combined cycle power plant, Energy,
156 (2018) 352–359.
- R. Miladi, N. Frikha, S. Gabsi, Exergy analysis of a solarpowered
vacuum membrane distillation unit using two
models, Energy, 120 (2017) 872–883.
- M. Khayet, T. Matsuura, Membrane Distillation: Principles
and Applications, Elsevier, The Netherlands, 2011, 512 pages.
- A. Baghernejad, M. Yaghoubi, Multi-objective exergoeconomic
optimization of an integrated solar combined cycle system
using evolutionary algorithms, Int. J. Energy Res., 35 (2011)
601–615.
- A. Baghernejad, M. Yaghoubi, Exergoeconomic Analysis and
Optimization of an Integrated Solar Combined Cycle System
(ISCCS) Using Genetic Algorithm, Energy Convers. Manage.,
52 (2011) 2193–2203.
- A. Boyano, T. Morosuk, A.M. Blanco-Marigota, G. Tsatsaronis,
Conventional and exergoenvironmental analysis of steam
methane reforming reactor for hydrogen production, J. Cleaner
Prod., 20 (2012) 152–160.
- Simapro (pRé Consultants). Available: http://www.presustainability.
com/Simapro.
- S. Suman, M.K. Khan, M. Pathak, Performance enhancement
of solar collectors – a review, Renewable Sustainable Energy
Rev., 49 (2015) 192–210.
- N. Benz, T. Beikircher, High efficiency evacuated flat-plate solar
collector for process steam production, Sol. Energy, 65 (1999)
111–118.
- T. Beikircher, M. Möckl, P. Osgyan, G. Streib, Advanced solar
flat plate collectors with full area absorber, front side film and
rear side vacuum super insulation, Sol. Energy Mater. Solar
Cells, 141 (2015) 308–406.
- M.E. Zayed, J. Zhao, A.H. Elsheikh, Y. Du, F.A. Hammad, L.
Ma, A.E. Kabeel, S. Sadek, Performance augmentation of flat
plate solar water collector using phase change materials and
nanocomposite
phase change materials: a review, Process Saf.
Environ. Prot., 128 (2019) 135–157.
- S.A. Sakhaei, M.S. Valipour, Performance enhancement
analysis of The flat plate collectors: a comprehensive review,
Renewable Sustainable Energy Rev., 102 (2019) 186–204.
- K. Farhana, K. Kadirgama, M.M. Rahman, D. Ramasamy,
M.M. Noor, G. Najafi, M. Samykano, A.S.F. Mahamude,
Improvement in the performance of solar collectors with
nanofluids — a state-of the-art review, Nano-Struct. Nano-
Objects, 18 (2019) 1–21.
- J. Hu, G. Zhang, Performance improvement of solar air collector
based on airflow reorganization: a review, Appl. Therm.
Eng., 155 (2019) 592–611.
- R. Chauhan, T. Singh, N.S. Thakur, N. Kumar, R. Kumar,
A. Kumar, Heat transfer augmentation in solar thermal
collectors using impinging air jets: a comprehensive review,
Renewable Sustainable Energy Rev., 82 (2018) 3179–3190.
- R. Moss, S. Shire, P. Henshall, F. Arya, P. Eames, T. Hyde,
Performance of evacuated flat plate solar thermal collectors,
Therm. Sci. Eng. Prog., 8 (2018) 296–306.
- F.S. Javadi, R. Saidur, M. Kamalisarvestani, Investigating
performance improvement of solar collectors by using nanofluids,
Renewable Sustainable Energy Rev., 28 (2013) 232–245.
- A.N. Al-Shamani, M.H. Yazdi, M.A. Alghoul, A.M. Abed,
M.H. Ruslan, S. Mat, K. Sopian, Nanofluids for improved
efficiency in cooling solar collectors – a review, Renewable
Sustainable Energy Rev., 38 (2014) 348–367.
- K.Y. Leong, H.C. Ong, N.H. Amer, M.J. Norazrina,
M.S. Risby, K.Z. Ku Ahmad, An overview on current application
of nanofluids in solar thermal collector and its challenges,
Renewable Sustainable Energy Rev., 53 (2016) 1092–1105.
- S.R. Shamshirgaran, M.K. Assadi, V. Badescu, H.H. AlKayiem,
Upper limits for the work extraction by nanofluidfilled
selective flat-plate solar collectors, Energy, 160 (2018) 875–885.
- P. Naphon, Effect of porous media on the performance of the
double-pass flat plate solar air heater, Int. Commun. Heat Mass
Transf., 32 (2005) 140–150.
- K. Sopian, M.A. Alghoul, E.M. Alfegi, M.Y. Sulaiman,
E.A. Musa, Evaluation of thermal efficiency of double-pass
solar collector with porous–nonporous media, Renewable
Energy, 34 (2009) 640–645.
- K. Balaji, P. Ganesh Kumar, D. Sakthivadivel, V.S. Vigneswaran,
S. Iniyan, Experimental investigation on flat plate solar collector
using frictionally engaged thermal performance enhancer
in the absorber tube, Renewable Energy, 142 (2009) 62–72.
- M.K. Gupta, S.C. Kaushik, Performance evaluation of solar air
heater having expanded metal mesh as artificial roughness on
absorber plate, Int. J. Therm. Sci., 48 (2009) 1007–1016.
- R.H. Martín, J. Pérez-García, A. García, F.J. García-Soto,
E. Lopez-Galiana, Simulation of an enhanced flat-plate solar
liquid collector with wire-coil insert devices, Sol. Energy,
85 (2011) 455–469.
- A. Huertas, J.P. Solano, A. Garcia, R. Herrero-Martín, J. Pérez-
García, Tube-side heat transfer enhancement in flat-plate
liquid solar collectors with wire coil inserts, Exp. Heat Transf.,
30 (2017) 1–10.
- L.S. Sundar, M.K. Singh, V. Punnaiah, A.C.M. Sousa,
Experimental investigation of Al2O3/water nanofluids on the
effectiveness of solar flat-plate collectors with and without
twisted tape inserts, Renewable Energy, 119 (2018) 820–833.
- S.A. Farshad, M. Sheikholeslami, Nanofluid flow inside a solar
collector utilizing twisted tape considering exergy and entropy
analysis, Renewable Energy, 141 (2019) 246–258.
- A. García, R. Herrero-Martin, J.P. Solano, J. P´ erez-García,
The role of insert devices on enhancing heat transfer in a
flat-plate solar water collector, Appl. Therm. Eng., 132 (2018)
479–489.
- P.-C. Huang, C.-C. Chen, H.-Y. Hwang, Thermal enhancement
in a flat-plate solar water collector by flow pulsation and
metal-foam blocks, Int. J. Heat Mass Transf., 61 (2013) 696–720.
- K.T.G. Hollands, Honeycomb devices in flat-plate solar
collectors, Sol. Energy, 9 (1965) 159–164.
- A.H. Abdullah, H.Z. Abou-Ziyan, A.A. Ghoneim, Thermal
performance of flat plate solar collector using various
arrangements of compound honeycomb, Energy Convers.
Manage., 44 (2003) 3093–3112.
- A.A. Ghoneim, Performance optimization of solar collector
equipped with different arrangements of square-celled
honeycomb, Int. J. Therm. Sci., 44 (2005) 95–105.
- M. Fan, S. You, X. Gao, H. Zhang, B. Li, W. Zheng, L. Sun,
T. Zhou, A comparative study on the performance of liquid
flat-plate solar collector with a new V-corrugated absorber,
Energy Convers. Manage., 184 (2019) 235–248.
- M.A. Karim, M.N.A. Hawlader, Performance investigation
of flat plate, v-corrugated and finned air collectors, Energy,
31 (2006) 452–470.
- c D. Dovi´, M. Andrassy, Numerically assisted analysis of flat
and corrugated plate solar collectors thermal performances,
Sol. Energy, 86 (2012) 2416–2431.
- K. Pottler, C.M. Sippel, A. Beck, J. Fricke, Optimized finned
absorber geometries for solar air heating collectors, Sol.
Energy, 67 (1999) 35–52.
- N, Moummi, S. Youcef-Ali, A. Moummi, J.Y. Desmons, Energy
analysis of a solar air collector with rows of fins, Renewable
Energy, 29 (2004) 2053–2064.
- A. Priyam, P. Chand, Effect of wavelength and amplitude on
the performance of wavy finned absorber solar air heater,
Renewable Energy, 119 (2018) 690–702.
- A. Fudholi, K. Sopian, A review of solar air flat plate collector
for drying application, Renewable Sustainable Energy Rev.,
102 (2019) 333–345.
- S. Gorjian, H. Ebadi, F. Calise, A. Shukla, C. Ingrao, A review on
recent advancements in performance enhancement techniques
for low-temperature solar collectors, Energy Convers. Manage.,
222 (2020) 113246.