References

  1. F.R. Zhang, Prediction of China’s water shortage in the year of 2025, Appl. Mech. Mater., 409–410 (2013) 83–88.
  2. M.A. Sharaf, A.S. Nafey, L. García-Rodríguez, Thermo-economic analysis of solar thermal power cycles assisted MED-VC (multi effect distillation-vapor compression) desalination processes, Energy, 36 (2011) 2753–2764.
  3. H. Abd-ur-Rehman, F. Al-Sulaiman, Mathematical Modeling of Bubbler Humidifier for Humidification–Dehumidification (HDH) Water Desalination System, Proceedings of the 1st International Conference on Mechanical and Transportation Engineering, Kuala Lumpur, Malaysia, 2015.
  4. M.M. Alhazmy, Minimum work requirement for water production in humidification—dehumidification desalination cycle, Desalination, 214 (2007) 102–111.
  5. N.M. Niroomand, M. Zamen, M. Amidpour, Theoretical investigation of using a direct contact dehumidifier in humidification–dehumidification desalination unit based on an open air cycle, Desal. Water Treat., 54 (2015) 305–315.
  6. S.M. Soufari, M. Zamen, M. Amidpour, Performance optimization of the humidification–dehumidification desalination process using mathematical programming, Desalination, 237 (2009) 305–317.
  7. M. Zamen, M. Amidpour, S.M. Soufari, Cost optimization of a solar humidification–dehumidification desalination unit using mathematical programming, Desalination, 239 (2009) 92–99.
  8. S.M. Soufari, M. Zamen, M. Amidpour, Experimental validation of an optimized solar humidification–dehumidification desalination unit, Desal. Water Treat., 6 (2009) 244–251.
  9. A. Raj, R. Bajaj, T. Srinivas, Performance Evaluation of Honeycomb Structured PVC Packed Humidifier in a Humidification–Dehumidification Desalination Plant, 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS), IEEE, Nagercoil, India, 2016.
  10. A.A. Morales, D.S. Carvajal, Heat and Mass Transfer in a Direct Contact Humidifier of a Humidification–Dehumidification Desalination System, 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), IEEE, San Diego, CA, USA, 2017.
  11. O. Rejeb, M.S. Yousef, C. Ghenai, H. Hassan, M. Bettayeb, Investigation of a solar still behaviour using response surface methodology, Case Stud. Therm. Eng., 24 (2021) 100816, doi: 10.1016/j.csite.2020.100816.
  12. K.H. Javed, T. Mahmud, E. Purba, Enhancement of mass transfer in a spray tower using swirling gas flow, Chem. Eng. Res. Des., 84 (2006) 465–477.
  13. D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, Hoboken, NJ, 2017.
  14. R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, Hoboken, NJ, 2016.
  15. L. Custer, D.R. McCarville, D.C. Montgomery, Student Solutions Manual to Accompany Design and Analysis of Experiments, John Wiley & Sons, New York, 2006.
  16. J. Antony, Design of Experiments for Engineers and Scientists, Elsevier, 2014.
  17. B.K. Körbahti, A. Tanyolaç, Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye: optimization through response surface methodology, J. Hazard. Mater., 151 (2008) 422–431.