References

  1. G. Wang, S. Zhou, X. Han, L. Zhang, S. Ding, Y. Li, D. Zhang, K. Zarin, Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing city, southwest China, J. Hazard. Mater., 389 (2020) 122110, doi: 10.1016/j.jhazmat.2020.122110.
  2. Y.G. Zhu, T.A. Johnson, J.Q. Su, M. Qiao, G.X. Guo, R.D. Stedtfeld, S.A. Hashsham, J.M. Tiedje, Diverse and abundant antibiotic resistance genes in Chinese swine farms, Proc. Natl. Acad. Sci. USA, 110 (2013) 3435–3440.
  3. W. Ouyang, B. Gao, H. Cheng, L. Zhang, Y. Wang, C. Lin, J. Chen, Airborne bacterial communities and antibiotic resistance gene dynamics in PM2.5 during rainfall, Environ. Int., 134 (2020) 105318. https://doi.org/10.1016/j.envint.2019. 105318.
  4. M.-H. Huang, W. Zhang, C. Liu, H.-Y. Hu, Fate of trace tetracycline with resistant bacteria and resistance genes in an improved AAO wastewater treatment plant, Process Saf. Environ. Prot., 93 (2015) 68–74.
  5. S. Hu, J. Hu, B. Liu, D. Wang, L. Wu, K. Xiao, S. Liang, H. Hou, J. Yang, In situ generation of zero valent iron for enhanced hydroxyl radical oxidation in an electrooxidation system for sewage sludge dewatering, Water Res., 145 (2018) 162–171.
  6. R. Mailler, J. Gasperi, D. Patureau, E. Vulliet, N. Delgenes, A. Danel, S. Deshayes, V. Eudes, S. Guerin, R. Moilleron, G. Chebbo, V. Rocher, Fate of emerging and priority micropollutants during the sewage sludge treatment: case study of Paris conurbation. Part 1: Contamination of the different types of sewage sludge, Waste Manage., 59 (2017) 379–393.
  7. J.Q. Su, B. Wei, W.Y. Ou-Yang, F.Y. Huang, Y. Zhao, H.J. Xu, Y.G. Zhu, Antibiotic resistome and its association with bacterial communities during sewage sludge composting, Environ. Sci. Technol., 49 (2015) 7356–7363.
  8. L. Wang, Z. Qiang, Y. Li, W. Ben, An insight into the removal of fluoroquinolones in activated sludge process: sorption and biodegradation characteristics, J. Environ. Sci. (China), 56 (2017) 263–271.
  9. Y. Chen, G. Yu, Q. Cao, H. Zhang, Q. Lin, Y. Hong, Occurrence and environmental implications of pharmaceuticals in Chinese municipal sewage sludge, Chemosphere, 93 (2013) 1765–1772.
  10. L. Gao, Y. Shi, W. Li, H. Niu, J. Liu, Y. Cai, Occurrence of antibiotics in eight sewage treatment plants in Beijing, China, Chemosphere, 86 (2012) 665–671.
  11. W. Li, Y. Shi, L. Gao, J. Liu, Y. Cai, Occurrence, distribution and potential affecting factors of antibiotics in sewage sludge of wastewater treatment plants in China, Sci. Total Environ., 445–446 (2013) 306–313.
  12. Q.Q. Zhang, G.G. Ying, C.G. Pan, Y.S. Liu, J.L. Zhao, Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance, Environ. Sci. Technol., 49 (2015) 6772–6782.
  13. J. Zhang, Q. Sui, J. Tong, H. Zhong, Y. Wang, M. Chen, Y. Wei, Soil types influence the fate of antibiotic-resistant bacteria and antibiotic resistance genes following the land application of sludge composts, Environ. Int., 118 (2018) 34–43.
  14. A. Khadra, A. Ezzariai, G. Merlina, M.-J. Capdeville, H. Budzinski, H. Hamdi, E. Pinelli, M. Hafidi, Fate of antibiotics present in a primary sludge of WWTP during their co-composting with palm wastes, Waste Manage., 84 (2019) 13–19.
  15. A. Ezzariai, M. Hafidi, A. Khadra, Q. Aemig, L. El Fels, M. Barret, G. Merlina, D. Patureau, E. Pinelli, Human and veterinary antibiotics during composting of sludge or manure: global perspectives on persistence, degradation, and resistance genes, J. Hazard. Mater., 359 (2018) 465–481.
  16. J. Zhang, Y. Bao, Y. Jiang, H.T. Liu, B.D. Xi, D.Q. Wang, Removal and dissipation pathway of typical fluoroquinolones in sewage sludge during aerobic composting, Waste Manage., 95 (2019) 450–457.
  17. M. Čvančarová, M. Moeder, A. Filipová, T. Cajthaml, Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi - metabolites, enzymes and residual antibacterial activity, Chemosphere, 136 (2014) 311–320.
  18. A. Prieto, M. Möder, R. Rodil, L. Adrian, E. Marco-Urrea, Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products, Bioresour. Technol., 102 (2011) 10987–10995.
  19. H.G. Wetzstein, J. Schneider, W. Karl, Metabolite proving fungal cleavage of the aromatic core part of a fluoroquinolone antibiotic, AMB Express, 2 (2012) 1–7.
  20. M. Rusch, A. Spielmeyer, J. Meißner, M. Kietzmann, H. Zorn, G. Hamscher, Efficient reduction of antibacterial activity and cytotoxicity of fluoroquinolones by fungal-mediated N-oxidation, J. Agric. Food Chem., 65 (2017) 3118–3126.
  21. C.L. Amorim, I.S. Moreira, A.S. Maia, M.E. Tiritan, P.M.L. Castro, Biodegradation of ofloxacin, norfloxacin, and ciprofloxacin as single and mixed substrates by Labrys portucalensis F11, Appl. Microbiol. Biotechnol., 98 (2014) 3181–3190.
  22. A.S. Maia, A.R. Ribeiro, C.L. Amorim, J.C. Barreiro, Q.B. Cass, P.M.L. Castro, M.E. Tiritan, Degradation of fluoroquinolone antibiotics and identification of metabolites/transformation products by liquid chromatography-tandem mass spectrometry, J. Chromatogr. A, 1333 (2014) 87–98.
  23. D. Becker, S. Varela Della Giustina, S. Rodriguez-Mozaz, R. Schoevaart, D. Barceló, M. de Cazes, M.P. Belleville, J. Sanchez-Marcano, J. de Gunzburg, O. Couillerot, J. Völker, J. Oehlmann, M. Wagner, Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase – degradation of compounds does not always eliminate toxicity, Bioresour. Technol., 219 (2016) 500–509.
  24. M. Sturini, A. Speltini, F. Maraschi, L. Pretali, A. Profumo, E. Fasani, A. Albini, R. Migliavacca, E. Nucleo, Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts, Water Res., 46 (2012) 5575–5582.
  25. G. Miner, Standard Methods for the Examination of Water and Wastewater, 21st Edition, J. Am. Water Work. Assoc., (2006) 130.
  26. M.-H. Zhao, G.-M. Zeng, D.-L. Huan, C.-L. Feng, C. Huang, S. Hu, F.-F. Su, C. Lai, Z. Wei, Research on sorption and transport characteristics of ligninolytic enzymes in different compost substances, Environ. Sci., 31 (2010) 1647–1654. (In Chinese)
  27. R.C. Team, A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2018. http://www.r-project.org.
  28. H. Liu, L. Wang, M. Lei, Positive impact of biochar amendment on thermal balance during swine manure composting at relatively low ambient temperature, Bioresour. Technol., 273 (2019) 25–33.
  29. Y. Bin Ho, M.P. Zakaria, P.A. Latif, N. Saari, Degradation of veterinary antibiotics and hormone during broiler manure composting, Bioresour. Technol., 131 (2013) 476–484.
  30. L. Wang, G. Chen, G. Owens, J. Zhang, Enhanced antibiotic removal by the addition of bamboo charcoal during pig manure composting, RSC Adv., 6 (2016) 27575–27583.
  31. D.W. Kim, T.M. Heinze, B.S. Kim, L.K. Schnackenberg, K.A. Woodling, J.B. Sutherland, Modification of norfloxacin by a Microbacterium sp. strain isolated from a wastewater treatment plant, Appl. Environ. Microbiol., 77 (2011) 6100–6108.
  32. I.A. Parshikov, J.B. Sutherland, Microbial transformations of antimicrobial quinolones and related drugs, J. Ind. Microbiol. Biotechnol., 39 (2012) 1731–1740.
  33. M. Chen, W. Chu, Photocatalytic degradation and decomposition mechanism of fluoroquinolones norfloxacin over bismuth tungstate: experiment and mathematic model, Appl. Catal. B, 168–169 (2015) 175–182.
  34. Y. Ji, C. Ferronato, A. Salvador, X. Yang, J.-M. Chovelon, Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics, Sci. Total Environ., 472 (2014) 800–808.
  35. L. Zhu, B. Santiago-Schübel, H. Xiao, H. Hollert, S. Kueppers, Electrochemical oxidation of fluoroquinolone antibiotics: mechanism, residual antibacterial activity and toxicity change, Water Res., 102 (2016) 52–62.
  36. P. Widsten, A. Kandelbauer, Laccase applications in the forest products industry: a review, Enzyme Microb. Technol., 42 (2008) 293–307.
  37. M. Tuomela, M. Vikman, A. Hatakka, M. Itävaara, Biodegradation of lignin in a compost environment: a review, Bioresour. Technol., 72 (2000) 169–183.
  38. A. Hatakka, Lignin-modifying enzymes from selected whiterot fungi: production and role from in lignin degradation, FEMS Microbiol. Rev., 13 (1994) 125–135.
  39. F. Meng, X. He, Effects of naturally occurring grit on the reactor performance and microbial community structure of membrane bioreactors, J. Membr. Sci., 496 (2015) 284–292.
  40. Z. Xu, L. Qin, M. Cai, W. Hua, M. Jin, Biodegradation of kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains, Environ. Sci. Pollut. Res., 25 (2018) 14171–14181.
  41. M. Rusch, A. Kauschat, A. Spielmeyer, A. Römpp, H. Hausmann, H. Zorn, G. Hamscher, Biotransformation of the antibiotic Danofloxacin by Xylaria longipes leads to an efficient reduction of Its antibacterial activity, J. Agric. Food Chem., 63 (2015) 6897–6904.