References

  1. K. Weissermel, H.-J. Arpe, Ullmann’s Encyclopedia of Industrial Chemistry, Vol. A17, 5th ed., VCH, Weinheim, 1991.
  2. G.X. Wang, X.Y. Zhang, C.Z. Yao, M.Z. Tian, Acute toxicity and mutagenesis of three metabolites mixture of nitrobenzene in mice, Toxicol. Ind. Health, 27 (2011) 167–171.
  3. J.W. Holder, Nitrobenzene carcinogenicity in animals and human hazard evaluation, Toxicol. Ind. Health, 15 (1999) 445–457.
  4. L. Zhu, B. Ma, L. Zhang, The study of distribution and fate of nitrobenzene in a water/sediment microcosm, Chemosphere, 69 (2007) 1579–1585.
  5. I. Nitoi, P. Oancea, M. Raileanu, M. Crisan, L. Constantin, I. Cristea, UV-VIS photocatalytic degradation of nitrobenzene from water using heavy metal doped titania, J. Ind. Eng. Chem., 21 (2015) 677–682.
  6. R.J. Tayade, H.C. Bajaj, R.V. Jasra, Photocatalytic removal of organic contaminants from water exploiting tuned band gap photocatalysts, Desalination, 275 (2011) 160–165.
  7. X.Z. Shen, Z.C. Liu, S.M. Xie, J. Guo, Degradation of nitrobenzene using titania photocatalysts co-doped with nitrogen and cerium under visible light illumination, J. Hazard. Mater., 162 (2009) 1193–1198.
  8. L. Zhao, W. Ma, J. Ma, G. Wen, Q. Liu, Relationship between acceleration of hydroxyl radical initiation and increase of multiple-ultrasonic field amount in the process of ultrasound catalytic ozonation for degradation of nitrobenzene in aqueous solution, Ultrason. Sonochem., 22 (2015) 198–204.
  9. L.K. Weavers, F.H. Ling, M.R. Hoffmann, Aromatic compound degradation in water using a combination of sonolysis and ozonolysis, Environ. Sci. Technol., 32 (1998) 2727–2733.
  10. L. Zhao, J. Ma, Z.Z. Sun, Oxidation products and pathway of ceramic honeycomb-catalyzed ozonation for the degradation of nitrobenzene in aqueous solution, Appl. Catal., B, 79 (2008) 244–253.
  11. L. Zhao, J. Ma, Z.Z. Sun, X.D. Zhai, Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycomb-supported manganese, Appl. Catal., B, 83 (2008) 256–264.
  12. L. Zhao, J. Ma, Z.Z. Sun, X.D. Zhai, Preliminary kinetic study on the degradation of nitrobenzene by modified ceramic honeycomb-catalytic ozonation in aqueous solution, J. Hazard. Mater., 161 (2009) 988–994.
  13. L. Zhao, J. Ma, Z.Z. Sun, H. Liu, Mechanism of heterogeneous catalytic ozonation of nitrobenzene in aqueous solution with modified ceramic honeycomb, Appl. Catal., B, 89 (2009) 326–334.
  14. L. Zhao, J. Ma, Z.Z. Sun, H. Liu, Influencing mechanism of temperature on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation, J. Hazard. Mater., 167 (2009) 1119–1125.
  15. C. Chen, X. Yan, B.A. Yoza, T. Zhou, Y. Li, Y. Zhan, Q. Wang, Q.X. Li, Efficiencies and mechanisms of ZSM5 zeolites loaded with cerium, iron, or manganese oxides for catalytic ozonation of nitrobenzene in water, Sci. Total Environ., 612 (2018) 1424–1432.
  16. Y. Chen, H. Li, W. Liu, Y. Tu, Y. Zhang, W. Han, L. Wang, Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode, Chemosphere, 113 (2014) 48–55.
  17. K. Xia, F. Xie, Y. Ma, Degradation of nitrobenzene in aqueous solution by dual-pulse ultrasound enhanced electrochemical process, Ultrason. Sonochem., 21 (2014) 549–553.
  18. D. Gu, J. Dong, Y. Zhang, L. Zhu, C. Yan, H. Wu, B. Wang, An insight into pathways of solar-driven STEP oxidation of nitrobenzene by an integrated in situ thermoelectrochemical microreactor-analyzer, J. Cleaner Prod., 200 (2018) 1026–1033.
  19. B.C. Jiang, Z.Y. Lu, F.Q. Liu, A.M. Li, J.J. Dai, L. Xu, L.M. Chu, Inhibiting 1,3-dinitrobenzene formation in Fenton oxidation of nitrobenzene through a controllable reductive pretreatment with zero-valent iron, Chem. Eng. J., 174 (2011) 258–265.
  20. L. Carlos, D. Nichela, J.M. Triszcz, J.I. Felice, F.S.G. Einschlag, Nitration of nitrobenzene in Fenton’s processes, Chemosphere, 80 (2010) 340–345.
  21. Y. Zhang, K. Zhang, C. Dai, X. Zhou, H. Si, An enhanced Fenton reaction catalyzed by natural heterogeneous pyrite for nitrobenzene degradation in an aqueous solution, Chem. Eng. J., 244 (2014) 438–445.
  22. D.A. Nichela, A.M. Berkovic, M.R. Costante, M.P. Juliarena, F.S.G. Einschlag, Nitrobenzene degradation in Fenton-like systems using Cu(II) as catalyst. Comparison between Cu(II)- and Fe(III)-based systems, Chem. Eng. J., 228 (2013) 1148–1157.
  23. D. Nichela, L. Carlos, F.S.G. Einschlag, Autocatalytic oxidation of nitrobenzene using hydrogen peroxide and Fe(III), Appl. Catal., B, 82 (2008) 11–18.
  24. Y. Sun, Z. Yang, P. Tian, Y. Sheng, J. Xu, Y.F. Han, Oxidative degradation of nitrobenzene by a Fenton-like reaction with Fe-Cu bimetallic catalysts, Appl. Catal., B, 244 (2019) 1–10.
  25. H. Duan, Y. Liu, X. Yin, J. Bai, J. Qi, Degradation of nitrobenzene by Fenton-like reaction in a H2O2/schwertmannite system, Chem. Eng. J., 283 (2016) 873–879.
  26. G.M.S. Elshafei, F.Z. Yehia, O.I.H. Dimitry, A.M. Badawi, G. Eshaq, Ultrasonic assisted-Fenton-like degradation of nitrobenzene at neutral pH using nanosized oxide of Fe and Cu, Ultrason. Sonochem., 21 (2014) 1358–1365.
  27. J. Anotai, P. Sakulkittimasak, N. Boonrattanakij, M.C. Lu, Kinetics of nitrobenzene oxidation and iron crystallization in fluidized-bed Fenton process, J. Hazard. Mater., 165 (2009) 874–880.
  28. C. Ratanatamskul, S. Chintitanun, N. Masomboon, M.C. Lu, Inhibitory effect of inorganic ions on nitrobenzene oxidation by fluidized-bed Fenton process, J. Mol. Catal. A: Chem., 331 (2010) 101–105.
  29. Y. Ji, Y. Shi, L. Wang, J. Lu, Denitration and renitration processes in sulfate radical-mediated degradation of nitrobenzene, Chem. Eng. J., 315 (2017) 591–597.
  30. A. De Luca, X. He, D.D. Dionysiou, R.F. Dantas, S. Esplugas, Effects of bromide on the degradation of organic contaminants with UV and Fe2+ activated persulfate, Chem. Eng. J., 318 (2017) 206–213.
  31. J. Qiao, S. Luo, P. Yang, W. Jiao, Y. Liu, Degradation of nitrobenzene-containing wastewater by ozone/persulfate oxidation process in a rotating packed bed, J. Taiwan Inst. Chem. Eng., 99 (2019) 1–8.
  32. J. Guo, L. Zhu, N. Sun, Y. Lan, Degradation of nitrobenzene by sodium persulfate activated with zero-valent zinc in the presence of low frequency ultrasound, J. Taiwan Inst. Chem. Eng., 78 (2017) 137–143.
  33. Y. Pan, M. Zhou, X. Li, L. Xu, Z. Tang, X. Sheng, B. Li, Highly efficient persulfate oxidation process activated with premagnetization Fe0, Chem. Eng. J., 318 (2017) 50–56.
  34. Y. Zhang, X. Xu, Y. Pan, L. Xu, M. Zhou, Pre-magnetized Fe0 activated persulphate for the degradation of nitrobenzene in groundwater, Sep. Purif. Technol., 212 (2019) 555–562.
  35. T.J. Matula, R.A. Roy, P.D. Mourad, W.B. McNamara Iii, K.S. Suslick, Comparison of multibubble and single-bubble sonoluminescence spectra, Phys. Rev. Lett., 75 (1995) 2602–2605.
  36. R.A. Hiller, S.J. Putterman, K.R. Weninger, Time-resolved spectra of sonoluminescence, Phys. Rev. Lett., 80 (1998) 1090–1093.
  37. W.S. Chen, Y.C. Shih, Mineralization of aniline in aqueous solution by sono-activated peroxydisulfate enhanced with PbO semiconductor, Chemosphere, 239 (2020) 124686 (1–9), doi: 10.1016/j.chemosphere.2019.124686.
  38. D. Pavlov, Semiconductor mechanism of the processes during electrochemical oxidation of PbO to PbO2, J. Electroanal. Chem., 118 (1981) 167–185.
  39. I. Mukhopadhyay, S. Ghosh, M. Sharon, Surface modification by the potential delay technique to obtain a photoactive PbO film, Surf. Sci., 384 (1997) 234–239.
  40. M. Mohammadikish, K. Zamani, Controlled construction of uniform pompon-like Pb-ICP microarchitectures as a precursor for PbO semiconductor nanoflakes, Adv. Powder Technol., 29 (2018) 2813–2821.
  41. W.S. Chen, S.L. Huang, Photocatalytic degradation of bisphenol-A in aqueous solution by calcined PbO semiconductor irradiated with visible light, Desal. Water Treat., 190 (2020) 147–155.
  42. W.S. Chen, Y.C. Su, Removal of dinitrotoluenes in wastewater by sono-activated persulfate, Ultrason. Sonochem., 19 (2012) 921–927.
  43. S.L. He, L.P. Wang, J. Zhang, M.F. Hou, Fenton pre-treatment of wastewater containing nitrobenzene using ORP for indicating the endpoint of reaction, Procedia Earth planet. Sci., 1 (2009) 1268–1274.
  44. N.S. Satdeve, R.P. Ugwekar, B.A. Bhanvase, Ultrasound assisted preparation and characterization of Ag supported on ZnO nanoparticles for visible light degradation of methylene blue dye, J. Mol. Liq., 291 (2019) 111313 (1–11), doi: 10.1016/j. molliq.2019.111313.
  45. W.S. Chen, C.P. Huang, Mineralization of aniline in aqueous solution by electro-activated persulfate oxidation enhanced with ultrasound, Chem. Eng. J., 266 (2015) 279–288.
  46. C.J. Liang, H.W. Su, Identification of sulfate and hydroxyl radicals in thermally activated persulfate, Ind. Eng. Chem. Res., 48 (2009) 5558–5562.
  47. H. Lin, J. Wu, H. Zhang, Degradation of bisphenol A in aqueous solution by a novel electro/Fe3+/peroxydisulfate process, Sep. Purif. Technol., 117 (2013) 18–23.
  48. K.P. Jyothi, S. Yesodharan, E.P. Yesodharan, Ultrasound (US), Ultraviolet light (UV) and combination (US + UV) assisted semiconductor catalyzed degradation of organic pollutants in water: oscillation in the concentration of hydrogen peroxide formed in situ, Ultrason. Sonochem., 21 (2014) 1787–1796.
  49. Y. Sakthivel, G. Venugopal, A. Durairaj, S. Vasanthkumar, X. Huang, Utilization of the internal electric field in semiconductor photocatalysis: a short review, J. Ind. Eng. Chem., 72 (2019) 18–30.
  50. X. Zhang, Y. Wang, F. Hou, H. Li, Y. Yang, X. Zhang, Y. Yang, Y. Wang, Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres, Appl. Surf. Sci., 391 (2017) 476–483.
  51. Z. Han, L. Ren, Z. Cui, C. Chen, H. Pan, J. Chen, Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance, Appl. Catal., B, 126 (2012) 298–305.
  52. X. Li, W. Zhang, W. Cui, J. Li, Y. Sun, G. Jiang, H. Huang, Y. Zhang, F. Dong, Reactant activation and photocatalysis mechanisms on Bi-metal@Bi2GeO5 with oxygen vacancies: a combined experimental and theoretical investigation, Chem Eng. J., 370 (2019) 1366–1375.
  53. W. Cui, L. Chen, J. Li, Y. Zhou, Y. Sun, G. Jiang, S.C. Lee, F. Dong, Ba-vacancy induces semiconductor-like photocatalysis on insulator BaSO4, Appl. Catal., B, 253 (2019) 293–299.
  54. S.K. Maji, N. Mukherjee, A.K. Dutta, D.N. Srivastava, P. Paul, B. Karmakar, A. Mondal, B. Adhikary, Deposition of nanocrystalline CuS thin film from a single precursor: structural, optical and electrical properties, Mater. Chem. Phys., 130 (2011) 392–397.
  55. V. Štengl, T.M. Grygar, The simplest way to Iodine-doped anatase for photocatalysts activated by visible light, Int. J. Photoenergy, 2011 (2011) 685935–685948.
  56. E. Kamaraj, S. Somasundaram, K. Balasubramani, M.P. Eswaran, R. Muthuramalingam, S. Park, Facile fabrication of CuO-Pb2O3 nanophotocatalysts for efficient degradation of Rose Bengal dye under visible light irradiation, Appl. Surf. Sci., 433 (2018) 206–212.
  57. L.M. Droessler, H.E. Assender, A.A.R. Watt, Thermally deposited lead oxides for thin film photovoltaics, Mater. Lett., 71 (2012) 51–53.
  58. Y.C. Lai, J.C. Lin, C. Lee, Nucleation and growth of highly oriented lead titanate thin films prepared by a sol-gel method, Appl. Surf. Sci., 125 (1998) 51–57.
  59. M. Salavati-Niasari, F. Mohandes, F. Davar, Preparation of PbO nanocrystals via decomposition of lead oxalate, Polyhedron, 28 (2009) 2263–2267.
  60. F.Y. Liu, J.H. Lin, Y.M. Dai, L.W. Chen, S.T. Huang, T.W. Yeh, J.L. Chang, C.C. Chen, Preparation of perovskites PbBiO2I/PbO exhibiting visible-light photocatalytic activity, Catal. Today, 314 (2018) 28–41.
  61. C.H. Park, M.S. Won, Y.H. Oh, Y.G. Son, An XPS study and electrical properties of Pb1.1Zr0.53Ti0.47O3/PbO/Si (MFIS) structures according to the substrate temperature of the PbO buffer layer, Appl. Surf. Sci., 252 (2005) 1988–1997.
  62. D.A. Zatsepin, D.W. Boukhvalov, N.V. Gavrilov, A.F. Zatsepin, V.Y. Shur, A.A. Esin, S.S. Kim, E.Z. Kurmaev, Soft electronic structure modulation of surface (thin-film) and bulk (ceramics) morphologies of TiO2-host by Pb-implantation: XPS-and-DFT characterization, Appl. Surf. Sci., 400 (2017) 110–117.
  63. A. Kanca, D. Uner, In situ and downstream sulfidation reactivity of PbO and ZnO during pyrolysis and hydrogenation of a high-sulfur lignite, Int. J. Hydrogen Energy, 44 (2019) 18827–18835.
  64. P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data, 17 (1988) 1027–1284.
  65. M. Sivakumar, A.B. Pandit, Ultrasound enhanced degradation of Rhodamine B: optimization with power density, Ultrason. Sonochem., 8 (2001) 233–240.
  66. M. Sivakumar, P.A. Tatake, A.B. Pandit, Kinetics of p-nitrophenol degradation: effect of reaction conditions and cavitational parameters for a multiple frequency system, Chem. Eng. J., 85 (2002) 327–338.
  67. W.S. Chen, C.P. Huang, Decomposition of nitrotoluenes in wastewater by sonoelectrochemical and sonoelectro-Fenton oxidation, Ultrason. Sonochem., 21 (2014) 840–845.
  68. L.W. Hou, H. Zhang, X.F. Xue, Ultrasound enhanced heterogeneous activation of peroxydisulfate by magnetite catalyst for the degradation of tetracycline in water, Sep. Purif. Technol., 84 (2012) 147–152.
  69. C. Berberidou, I. Poulios, N.P. Xekoukoulotakis, D. Mantzavinos, Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions, Appl. Catal. B., 74 (2007) 63–72.
  70. W.S. Chen, S.C. Huang, Sonophotocatalytic degradation of dinitrotoluenes and trinitrotoluene in industrial wastewater, Chem. Eng. J., 172 (2011) 944–951.
  71. D.A. House, Kinetics and mechanism of oxidation by peroxydisulfate, Chem. Rev., 62 (1962) 185–203.
  72. E. Hayon, A. Treinin, J. Wilf, Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. The SO2–•, SO3–•, SO2–•, and SO5–• radicals, J. Am. Chem. Soc., 94 (1972) 47–57.
  73. G.P. Anipsitakis, D.D. Dionysiou, M.A. Gonzalez, Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chlorine ions, Environ. Sci. Technol., 40 (2006) 1000–1007.
  74. J. Zhou, J. Xiao, D. Xiao, Y. Guo, C. Fang, X. Lou, Z. Wang, J. Liu, Transformations of chloro and nitro groups during the peroxymonosulfate-based oxidation of 4-chloro-2-nitrophenol, Chem. Eng. J., 134 (2015) 446–451.