References
- K. Weissermel, H.-J. Arpe, Ullmann’s Encyclopedia of Industrial
Chemistry, Vol. A17, 5th ed., VCH, Weinheim, 1991.
- G.X. Wang, X.Y. Zhang, C.Z. Yao, M.Z. Tian, Acute toxicity and
mutagenesis of three metabolites mixture of nitrobenzene in
mice, Toxicol. Ind. Health, 27 (2011) 167–171.
- J.W. Holder, Nitrobenzene carcinogenicity in animals and
human hazard evaluation, Toxicol. Ind. Health, 15 (1999)
445–457.
- L. Zhu, B. Ma, L. Zhang, The study of distribution and fate of
nitrobenzene in a water/sediment microcosm, Chemosphere, 69
(2007) 1579–1585.
- I. Nitoi, P. Oancea, M. Raileanu, M. Crisan, L. Constantin,
I. Cristea, UV-VIS photocatalytic degradation of nitrobenzene
from water using heavy metal doped titania, J. Ind. Eng. Chem.,
21 (2015) 677–682.
- R.J. Tayade, H.C. Bajaj, R.V. Jasra, Photocatalytic removal of
organic contaminants from water exploiting tuned band gap
photocatalysts, Desalination, 275 (2011) 160–165.
- X.Z. Shen, Z.C. Liu, S.M. Xie, J. Guo, Degradation of
nitrobenzene using titania photocatalysts co-doped with
nitrogen and cerium under visible light illumination, J. Hazard.
Mater., 162 (2009) 1193–1198.
- L. Zhao, W. Ma, J. Ma, G. Wen, Q. Liu, Relationship between
acceleration of hydroxyl radical initiation and increase of
multiple-ultrasonic field amount in the process of ultrasound
catalytic ozonation for degradation of nitrobenzene in aqueous
solution, Ultrason. Sonochem., 22 (2015) 198–204.
- L.K. Weavers, F.H. Ling, M.R. Hoffmann, Aromatic compound
degradation in water using a combination of sonolysis and
ozonolysis, Environ. Sci. Technol., 32 (1998) 2727–2733.
- L. Zhao, J. Ma, Z.Z. Sun, Oxidation products and pathway of
ceramic honeycomb-catalyzed ozonation for the degradation
of nitrobenzene in aqueous solution, Appl. Catal., B, 79 (2008)
244–253.
- L. Zhao, J. Ma, Z.Z. Sun, X.D. Zhai, Catalytic ozonation for the
degradation of nitrobenzene in aqueous solution by ceramic
honeycomb-supported manganese, Appl. Catal., B, 83 (2008)
256–264.
- L. Zhao, J. Ma, Z.Z. Sun, X.D. Zhai, Preliminary kinetic study
on the degradation of nitrobenzene by modified ceramic
honeycomb-catalytic ozonation in aqueous solution, J. Hazard.
Mater., 161 (2009) 988–994.
- L. Zhao, J. Ma, Z.Z. Sun, H. Liu, Mechanism of heterogeneous
catalytic ozonation of nitrobenzene in aqueous solution
with modified ceramic honeycomb, Appl. Catal., B, 89 (2009)
326–334.
- L. Zhao, J. Ma, Z.Z. Sun, H. Liu, Influencing mechanism of
temperature on the degradation of nitrobenzene in aqueous
solution by ceramic honeycomb catalytic ozonation, J. Hazard.
Mater., 167 (2009) 1119–1125.
- C. Chen, X. Yan, B.A. Yoza, T. Zhou, Y. Li, Y. Zhan, Q. Wang,
Q.X. Li, Efficiencies and mechanisms of ZSM5 zeolites loaded
with cerium, iron, or manganese oxides for catalytic ozonation
of nitrobenzene in water, Sci. Total Environ., 612 (2018)
1424–1432.
- Y. Chen, H. Li, W. Liu, Y. Tu, Y. Zhang, W. Han, L. Wang,
Electrochemical degradation of nitrobenzene by anodic
oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode,
Chemosphere, 113 (2014) 48–55.
- K. Xia, F. Xie, Y. Ma, Degradation of nitrobenzene in aqueous
solution by dual-pulse ultrasound enhanced electrochemical
process, Ultrason. Sonochem., 21 (2014) 549–553.
- D. Gu, J. Dong, Y. Zhang, L. Zhu, C. Yan, H. Wu, B. Wang,
An insight into pathways of solar-driven STEP oxidation of
nitrobenzene by an integrated in situ thermoelectrochemical
microreactor-analyzer, J. Cleaner Prod., 200 (2018) 1026–1033.
- B.C. Jiang, Z.Y. Lu, F.Q. Liu, A.M. Li, J.J. Dai, L. Xu, L.M. Chu,
Inhibiting 1,3-dinitrobenzene formation in Fenton oxidation
of nitrobenzene through a controllable reductive pretreatment
with zero-valent iron, Chem. Eng. J., 174 (2011) 258–265.
- L. Carlos, D. Nichela, J.M. Triszcz, J.I. Felice, F.S.G. Einschlag,
Nitration of nitrobenzene in Fenton’s processes, Chemosphere,
80 (2010) 340–345.
- Y. Zhang, K. Zhang, C. Dai, X. Zhou, H. Si, An enhanced
Fenton reaction catalyzed by natural heterogeneous pyrite for
nitrobenzene degradation in an aqueous solution, Chem. Eng.
J., 244 (2014) 438–445.
- D.A. Nichela, A.M. Berkovic, M.R. Costante, M.P. Juliarena,
F.S.G. Einschlag, Nitrobenzene degradation in Fenton-like
systems using Cu(II) as catalyst. Comparison between
Cu(II)- and Fe(III)-based systems, Chem. Eng. J., 228 (2013)
1148–1157.
- D. Nichela, L. Carlos, F.S.G. Einschlag, Autocatalytic oxidation
of nitrobenzene using hydrogen peroxide and Fe(III), Appl.
Catal., B, 82 (2008) 11–18.
- Y. Sun, Z. Yang, P. Tian, Y. Sheng, J. Xu, Y.F. Han, Oxidative
degradation of nitrobenzene by a Fenton-like reaction with
Fe-Cu bimetallic catalysts, Appl. Catal., B, 244 (2019) 1–10.
- H. Duan, Y. Liu, X. Yin, J. Bai, J. Qi, Degradation of nitrobenzene
by Fenton-like reaction in a H2O2/schwertmannite system,
Chem. Eng. J., 283 (2016) 873–879.
- G.M.S. Elshafei, F.Z. Yehia, O.I.H. Dimitry, A.M. Badawi,
G. Eshaq, Ultrasonic assisted-Fenton-like degradation of
nitrobenzene at neutral pH using nanosized oxide of Fe and Cu,
Ultrason. Sonochem., 21 (2014) 1358–1365.
- J. Anotai, P. Sakulkittimasak, N. Boonrattanakij, M.C. Lu,
Kinetics of nitrobenzene oxidation and iron crystallization
in fluidized-bed Fenton process, J. Hazard. Mater., 165 (2009)
874–880.
- C. Ratanatamskul, S. Chintitanun, N. Masomboon, M.C. Lu,
Inhibitory effect of inorganic ions on nitrobenzene oxidation
by fluidized-bed Fenton process, J. Mol. Catal. A: Chem.,
331 (2010) 101–105.
- Y. Ji, Y. Shi, L. Wang, J. Lu, Denitration and renitration processes
in sulfate radical-mediated degradation of nitrobenzene,
Chem. Eng. J., 315 (2017) 591–597.
- A. De Luca, X. He, D.D. Dionysiou, R.F. Dantas, S. Esplugas,
Effects of bromide on the degradation of organic contaminants
with UV and Fe2+ activated persulfate, Chem. Eng. J., 318 (2017)
206–213.
- J. Qiao, S. Luo, P. Yang, W. Jiao, Y. Liu, Degradation of
nitrobenzene-containing wastewater by ozone/persulfate
oxidation process in a rotating packed bed, J. Taiwan Inst.
Chem. Eng., 99 (2019) 1–8.
- J. Guo, L. Zhu, N. Sun, Y. Lan, Degradation of nitrobenzene
by sodium persulfate activated with zero-valent zinc in the
presence of low frequency ultrasound, J. Taiwan Inst. Chem.
Eng., 78 (2017) 137–143.
- Y. Pan, M. Zhou, X. Li, L. Xu, Z. Tang, X. Sheng, B. Li, Highly
efficient persulfate oxidation process activated with premagnetization
Fe0, Chem. Eng. J., 318 (2017) 50–56.
- Y. Zhang, X. Xu, Y. Pan, L. Xu, M. Zhou, Pre-magnetized Fe0
activated persulphate for the degradation of nitrobenzene in
groundwater, Sep. Purif. Technol., 212 (2019) 555–562.
- T.J. Matula, R.A. Roy, P.D. Mourad, W.B. McNamara Iii,
K.S. Suslick, Comparison of multibubble and single-bubble
sonoluminescence spectra, Phys. Rev. Lett., 75 (1995) 2602–2605.
- R.A. Hiller, S.J. Putterman, K.R. Weninger, Time-resolved spectra
of sonoluminescence, Phys. Rev. Lett., 80 (1998) 1090–1093.
- W.S. Chen, Y.C. Shih, Mineralization of aniline in aqueous
solution by sono-activated peroxydisulfate enhanced with
PbO semiconductor, Chemosphere, 239 (2020) 124686 (1–9),
doi: 10.1016/j.chemosphere.2019.124686.
- D. Pavlov, Semiconductor mechanism of the processes during
electrochemical oxidation of PbO to PbO2, J. Electroanal. Chem.,
118 (1981) 167–185.
- I. Mukhopadhyay, S. Ghosh, M. Sharon, Surface modification
by the potential delay technique to obtain a photoactive
PbO film, Surf. Sci., 384 (1997) 234–239.
- M. Mohammadikish, K. Zamani, Controlled construction of
uniform pompon-like Pb-ICP microarchitectures as a precursor
for PbO semiconductor nanoflakes, Adv. Powder Technol.,
29 (2018) 2813–2821.
- W.S. Chen, S.L. Huang, Photocatalytic degradation of
bisphenol-A in aqueous solution by calcined PbO semiconductor
irradiated with visible light, Desal. Water Treat., 190 (2020)
147–155.
- W.S. Chen, Y.C. Su, Removal of dinitrotoluenes in wastewater
by sono-activated persulfate, Ultrason. Sonochem., 19 (2012)
921–927.
- S.L. He, L.P. Wang, J. Zhang, M.F. Hou, Fenton pre-treatment of
wastewater containing nitrobenzene using ORP for indicating
the endpoint of reaction, Procedia Earth planet. Sci., 1 (2009)
1268–1274.
- N.S. Satdeve, R.P. Ugwekar, B.A. Bhanvase, Ultrasound
assisted preparation and characterization of Ag supported on
ZnO nanoparticles for visible light degradation of methylene
blue dye, J. Mol. Liq., 291 (2019) 111313 (1–11), doi: 10.1016/j.
molliq.2019.111313.
- W.S. Chen, C.P. Huang, Mineralization of aniline in aqueous
solution by electro-activated persulfate oxidation enhanced
with ultrasound, Chem. Eng. J., 266 (2015) 279–288.
- C.J. Liang, H.W. Su, Identification of sulfate and hydroxyl
radicals in thermally activated persulfate, Ind. Eng. Chem.
Res., 48 (2009) 5558–5562.
- H. Lin, J. Wu, H. Zhang, Degradation of bisphenol A in aqueous
solution by a novel electro/Fe3+/peroxydisulfate process,
Sep. Purif. Technol., 117 (2013) 18–23.
- K.P. Jyothi, S. Yesodharan, E.P. Yesodharan, Ultrasound (US),
Ultraviolet light (UV) and combination (US + UV) assisted
semiconductor catalyzed degradation of organic pollutants in
water: oscillation in the concentration of hydrogen peroxide
formed in situ, Ultrason. Sonochem., 21 (2014) 1787–1796.
- Y. Sakthivel, G. Venugopal, A. Durairaj, S. Vasanthkumar,
X. Huang, Utilization of the internal electric field in
semiconductor photocatalysis: a short review, J. Ind. Eng.
Chem., 72 (2019) 18–30.
- X. Zhang, Y. Wang, F. Hou, H. Li, Y. Yang, X. Zhang, Y. Yang,
Y. Wang, Effects of Ag loading on structural and photocatalytic
properties of flower-like ZnO microspheres, Appl. Surf. Sci.,
391 (2017) 476–483.
- Z. Han, L. Ren, Z. Cui, C. Chen, H. Pan, J. Chen, Ag/ZnO flower
heterostructures as a visible-light driven photocatalyst via
surface plasmon resonance, Appl. Catal., B, 126 (2012) 298–305.
- X. Li, W. Zhang, W. Cui, J. Li, Y. Sun, G. Jiang, H. Huang,
Y. Zhang, F. Dong, Reactant activation and photocatalysis
mechanisms on Bi-metal@Bi2GeO5 with oxygen vacancies: a
combined experimental and theoretical investigation, Chem
Eng. J., 370 (2019) 1366–1375.
- W. Cui, L. Chen, J. Li, Y. Zhou, Y. Sun, G. Jiang, S.C. Lee,
F. Dong, Ba-vacancy induces semiconductor-like photocatalysis
on insulator BaSO4, Appl. Catal., B, 253 (2019) 293–299.
- S.K. Maji, N. Mukherjee, A.K. Dutta, D.N. Srivastava,
P. Paul, B. Karmakar, A. Mondal, B. Adhikary, Deposition
of nanocrystalline CuS thin film from a single precursor:
structural, optical and electrical properties, Mater. Chem. Phys.,
130 (2011) 392–397.
- V. Štengl, T.M. Grygar, The simplest way to Iodine-doped
anatase for photocatalysts activated by visible light, Int. J.
Photoenergy, 2011 (2011) 685935–685948.
- E. Kamaraj, S. Somasundaram, K. Balasubramani, M.P.
Eswaran, R. Muthuramalingam, S. Park, Facile fabrication of
CuO-Pb2O3 nanophotocatalysts for efficient degradation of
Rose Bengal dye under visible light irradiation, Appl. Surf. Sci.,
433 (2018) 206–212.
- L.M. Droessler, H.E. Assender, A.A.R. Watt, Thermally
deposited lead oxides for thin film photovoltaics, Mater. Lett.,
71 (2012) 51–53.
- Y.C. Lai, J.C. Lin, C. Lee, Nucleation and growth of highly
oriented lead titanate thin films prepared by a sol-gel method,
Appl. Surf. Sci., 125 (1998) 51–57.
- M. Salavati-Niasari, F. Mohandes, F. Davar, Preparation of PbO
nanocrystals via decomposition of lead oxalate, Polyhedron,
28 (2009) 2263–2267.
- F.Y. Liu, J.H. Lin, Y.M. Dai, L.W. Chen, S.T. Huang, T.W. Yeh,
J.L. Chang, C.C. Chen, Preparation of perovskites PbBiO2I/PbO
exhibiting visible-light photocatalytic activity, Catal. Today,
314 (2018) 28–41.
- C.H. Park, M.S. Won, Y.H. Oh, Y.G. Son, An XPS study
and electrical properties of Pb1.1Zr0.53Ti0.47O3/PbO/Si (MFIS)
structures according to the substrate temperature of the PbO
buffer layer, Appl. Surf. Sci., 252 (2005) 1988–1997.
- D.A. Zatsepin, D.W. Boukhvalov, N.V. Gavrilov, A.F. Zatsepin,
V.Y. Shur, A.A. Esin, S.S. Kim, E.Z. Kurmaev, Soft electronic
structure modulation of surface (thin-film) and bulk (ceramics)
morphologies of TiO2-host by Pb-implantation: XPS-and-DFT
characterization, Appl. Surf. Sci., 400 (2017) 110–117.
- A. Kanca, D. Uner, In situ and downstream sulfidation
reactivity of PbO and ZnO during pyrolysis and hydrogenation
of a high-sulfur lignite, Int. J. Hydrogen Energy, 44 (2019)
18827–18835.
- P. Neta, R.E. Huie, A.B. Ross, Rate constants for reactions of
inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data,
17 (1988) 1027–1284.
- M. Sivakumar, A.B. Pandit, Ultrasound enhanced degradation
of Rhodamine B: optimization with power density, Ultrason.
Sonochem., 8 (2001) 233–240.
- M. Sivakumar, P.A. Tatake, A.B. Pandit, Kinetics of p-nitrophenol
degradation: effect of reaction conditions and cavitational
parameters for a multiple frequency system, Chem. Eng. J.,
85 (2002) 327–338.
- W.S. Chen, C.P. Huang, Decomposition of nitrotoluenes in
wastewater by sonoelectrochemical and sonoelectro-Fenton
oxidation, Ultrason. Sonochem., 21 (2014) 840–845.
- L.W. Hou, H. Zhang, X.F. Xue, Ultrasound enhanced
heterogeneous activation of peroxydisulfate by magnetite
catalyst for the degradation of tetracycline in water, Sep. Purif.
Technol., 84 (2012) 147–152.
- C. Berberidou, I. Poulios, N.P. Xekoukoulotakis, D. Mantzavinos,
Sonolytic, photocatalytic and sonophotocatalytic degradation
of malachite green in aqueous solutions, Appl. Catal. B.,
74 (2007) 63–72.
- W.S. Chen, S.C. Huang, Sonophotocatalytic degradation of
dinitrotoluenes and trinitrotoluene in industrial wastewater,
Chem. Eng. J., 172 (2011) 944–951.
- D.A. House, Kinetics and mechanism of oxidation by
peroxydisulfate, Chem. Rev., 62 (1962) 185–203.
- E. Hayon, A. Treinin, J. Wilf, Electronic spectra, photochemistry,
and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite
systems. The SO2–•, SO3–•, SO2–•, and SO5–• radicals, J. Am. Chem.
Soc., 94 (1972) 47–57.
- G.P. Anipsitakis, D.D. Dionysiou, M.A. Gonzalez, Cobalt-mediated
activation of peroxymonosulfate and sulfate radical
attack on phenolic compounds. Implications of chlorine ions,
Environ. Sci. Technol., 40 (2006) 1000–1007.
- J. Zhou, J. Xiao, D. Xiao, Y. Guo, C. Fang, X. Lou, Z. Wang,
J. Liu, Transformations of chloro and nitro groups during the
peroxymonosulfate-based oxidation of 4-chloro-2-nitrophenol,
Chem. Eng. J., 134 (2015) 446–451.