References

  1. V.O. Njoku, M. Asif, B.H. Hameed, 2,4-Dichlorophenoxyacetic acid adsorption onto coconut shell-activated carbon: isotherm and kinetic modeling, Desal. Water Treat., 55 (2015) 132–141.
  2. J.M. Salman, K.A. Al-Saad, Adsorption of 2,4-Dichlorophenoxyacetic acid onto date seeds activated carbon: equilibrium, kinetic and thermodynamic studies, Int. J. Chem. Sci., 10 (2012) 677–690.
  3. S. Karami, A. Maleki, E. Karimi, H. Poormazaheri, S. Zandi, B. Davari, Y.Z. Salimi, F. Gharibi, E. Kalantar, Biodegradation of 2,4-Dichlorophenoxyacetic acid by bacteria with highly antibiotic-resistant pattern isolated from wheat field soils in Kurdistan, Iran, Environ. Monit. Assess., 188 (2016) 659–667.
  4. S. Rahimi, A. Poormohammadi, B. Salmani, M. Ahmadian, M. Rezaei, Comparing the photocatalytic process efficiency using batch and tubular reactors in removal of methylene blue dye and COD from simulated textile wastewater, J. Water Reuse Desal., 6 (2016) 574–582.
  5. T.A.S. Hashmi, S.K. Menon, Accumulation and distribution of persistent organochlorine pesticides and their contamination of surface water and sediments of the Sabarmati River, India, J. Adv. Environ. Health. Res., 3 (2015) 15–26.
  6. R. Cattaneo, V.L. Loro, R. Spanevello, F.A. Silveira, L. Luz, D.S. Miron, M.B. Fonseca, B.S. Moraes, B. Clasen, Metabolic and histological parameters of silver catfish (Rhamdia quelen) exposed to commercial formulation of 2,4-dichlorophenoxiacetic acid (2,4-D) herbicide, Pestic. Biochem. Physiol., 92 (2008) 133–137.
  7. H.M. Gutiérrez-Zapata, K.L. Rojas, J. Sanabria, J.A. Rengifo- Herrera, 2,4-D abatement from groundwater samples by photo-Fenton processes at circumneutral pH using naturally iron present. Effect of inorganic ions, Environ. Sci. Pollut. Res., 24 (2017) 6213–6221.
  8. E.M. Thurman, M.T. Meyer, Herbicide Metabolites in Surface Water and Groundwater, ACS Symposium Series, American Chemical Society, Washington, DC, 1996.
  9. D.W. Parsons, J.M. Witt, Pesticides in Groundwater in the United States of America: A Report of a 1988 Survey of State Lead Agencies, Oregon State University Extension Service Report EM 8406, 1989.
  10. M. Kida, S. Ziembowicz, P. Koszelnik, Removal of organochlorine pesticides (OCPs) from aqueous solutions using hydrogen peroxide, ultrasonic waves, and a hybrid process, Sep. Purif. Technol., 192 (2018) 457–464.
  11. P. Bhatt, X.F. Zhou, Y.H. Huang, W.P. Zhang, S.H. Chen, Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides, J. Hazard. Mater., 411 (2021) 125026, doi: 10.1016/j.jhazmat. 2020.125026.
  12. M.T. Uddin, M.Z.B. Mukhlish, M.R.H. Patwary, A novel magnetically separable CoFe2O4/SnO2 composite photocatalyst for the degradation of methylene blue dye from aqueous solution, Desal. Water Treat., 212 (2021) 311–322.
  13. H. Hossaini, G. Moussavi, M. Farrokhi, The investigation of the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water, Water Res., 59 (2014) 130–144.
  14. R. Shokoohi, A. Dargahi, G. Ahmadidoost, M.J. Moradi, Removal of phenol from aqueous solutions using persulfate-assisted, photocatalytic-activated aluminum oxide nanoparticles, J. Adv. Environ. Health. Res., 7 (2019) 203–212.
  15. C.-H. Liao, S.-F. Kang, Y.-W. Hsu, Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide, Water Res., 37 (2003) 4109–4118.
  16. B. Shahmoradi, K. Soga, S. Ananda, R. Somashekar, K. Byrappa, Modification of neodymium-doped ZnO hybrid nanoparticles under mild hydrothermal conditions, Nanoscale, 2 (2010) 1160–1164.
  17. X.H. Zhao, M. Li, X.D. Lou, Sol–gel assisted hydrothermal synthesis of ZnO microstructures: morphology control and photocatalytic activity, Adv. Powder Technol., 25 (2014) 372–378.
  18. A.A. Mohammed, S.L. Kareem, Enhancement of ciprofloxacin antibiotic removal from aqueous solution using ZnO nanoparticles coated on pistachio shell, Desal. Water Treat., 213 (2021) 229–239.
  19. F.P. Faria, T.M.O. Ruellas, T.R. Giraldi, C.D. Roveri, S.C. Maestrelli, Zinc oxide porous samples obtained by the sacrifice phase technique as an alternative to water depollution: processing and dye photocatalytic potential, Desal. Water Treat., 212 (2021) 359–367.
  20. J. Müslehiddinoğlu, Y. Uludağ, H.Ö. Özbelge, L. Yilmaz, Effect of operating parameters on selective separation of heavy metals from binary mixtures via polymer enhanced ultrafiltration, J. Membr. Sci., 140 (1998) 251–266.
  21. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review, Water Res., 88 (2016) 428–448.
  22. C.L. Bahena, S.S. Martínez, D.M. Guzmán, M. del R.T. Hernández, Sonophotocatalytic degradation of alazine and gesaprim commercial herbicides in TiO2 slurry, Chemosphere, 71 (2008) 982–989.
  23. N. Aisah, D. Gustiono, V. Fauzia, I. Sugihartono, R. Nuryadi, Synthesis and enhanced photocatalytic activity of Ce-doped zinc oxide nanorods by hydrothermal method, IOP Conf. Ser.: Mater. Sci. Eng., 172 (2017) 012037.
  24. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis, Thin Solid Films, 605 (2016) 2–19.
  25. H.Y. Xu, H. Wang, Y.C. Zhang, W.L. He, M.K. Zhu, B. Wang, H. Yan, Hydrothermal synthesis of zinc oxide powders with controllable morphology, Ceram. Int., 30 (2004) 93–97.
  26. H. Sowa, H. Ahsbahs, High-pressure X-ray investigation of zincite ZnO single crystals using diamond anvils with an improved shape, J. Appl. Crystallogr., 39 (2006) 169–175.
  27. R. Ebrahimi, M. Mohammadi, A. Maleki, A. Jafari, B. Shahmoradi, R. Rezaee, M. Safari, H. Daraei, O. Giahi, K. Yetilmezsoy, S.H. Puttaiah, Photocatalytic degradation of 2,4-Dichlorophenoxyacetic acid in aqueous solution using Mn-doped ZnO/graphene nanocomposite under LED radiation, J. Inorg. Organomet. Polym. Mater., 30 (2020) 923–934.
  28. B. Subash, B. Krishnakumar, R. Velmurugan, M. Swaminathan, M. Shanthi, Synthesis of Ce co-doped Ag–ZnO photocatalyst with excellent performance for NBB dye degradation under natural sunlight illumination, Catal. Sci. Technol., 2 (2012) 2319–2326.
  29. G.A. Al-Dahash, Q.M. Salman, M.F. Haddawi, Study the effect of copper (Cu) doping on the structure properties of zinc oxide (ZnO) prepared by using pulsed laser deposition (PLD), J. Kerbala Univ., 15 (2017) 87–95.
  30. Ö.A. Yıldırım, H.E. Unalan, C. Durucan, Highly efficient room temperature synthesis of silver‐doped zinc oxide (ZnO:Ag) nanoparticles: structural, optical, and photocatalytic properties, J. Am. Ceram. Soc., 96 (2013) 766–773.
  31. G. Asgari, A. Seidmohammadi, M. Bagheri, S. Chavoshi, Evaluating the efficiency of dye removal from textile industry wastewater using the titanium dioxide photocatalytic process under UV-LED light irradiation: a case study, Hamadan Nakh Rang Factory, J. Clin. Med., 24 (2017) 143–151.
  32. M. Ahmadi Moghadam, N. Jaafarzadeh Haghighifard, S. Mirali, S. Jorfi, F. Dinarvand, N. Alavi, Efficiency study on nanophotocatalytic degradation and detoxification of C.I. direct blue 86 from aquatic solution using UVA/TiO2 and UVA/ZnO, J. Mazandaran Univ. Med. Sci., 26 (2016) 145–159.
  33. G. Riegel, J.R. Bolton, Photocatalytic efficiency variability in TiO2 particles, J. Phys. Chem., 99 (1995) 4215–4224.
  34. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal., B, 49 (2004) 1–14.
  35. M. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study on photocatalytic degradation of C.I. acid yellow 23 by ZnO photocatalyst, J. Hazard. Mater., 133 (2006) 226–232.
  36. L. Sanchez-Prado, R. Barro, C. Garcia-Jares, M. Llompart, M. Lores, C. Petrakis, N. Kalogerakis, D. Mantzavinos, E. Psillakis, Sonochemical degradation of triclosan in water and wastewater, Ultrason. Sonochem., 15 (2008) 689–694.
  37. E.D. Fard, A.J. Jafari, R.R. Kalantari, M. Gholami, A. Esrafili, Photocatalytic removal of aniline from synthetic wastewater using ZnO nanoparticle under ultraviolet irradiation, Iran. J. Health Environ., 5 (2012) 167–178.
  38. F.D. Mai, C.C. Chen, J.L. Chen, S.C. Liu, Photodegradation of methyl green using visible irradiation in ZnO suspensions: determination of the reaction pathway and identification of intermediates by a high-performance liquid chromatographyphotodiode array-electrospray ionization-mass spectrometry method, J. Chromatogr. A, 1189 (2008) 355–365.
  39. M. Qamar, M. Muneer, A comparative photocatalytic activity of titanium dioxide and zinc oxide by investigating the degradation of vanillin, Desalination, 249 (2009) 535–540.
  40. D.F. Ollis, E. Pelizzetti, N. Serpone, Destruction of water contaminants, Environ. Sci. Technol., 25 (1991) 1522–1529.
  41. P.X. Qiu, J.H. Yao, H. Chen, F. Jiang, X.C. Xie, Enhanced visiblelight photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst, J. Hazard. Mater., 317 (2016) 158–168.
  42. E.J. Hernández-Moreno, A. Martínez de la Cruz, L. Hinojosa-Reyes, J. Guzmán-Mar, M.A. Gracia-Pinilla, A. Hernández-Ramírez, Synthesis, characterization, and visible light–induced photocatalytic evaluation of WO3/NaNbO3 composites for the degradation of 2,4-D herbicide, Mater. Today Chem., 19 (2021) 100406, doi: 10.1016/j.mtchem.2020.100406.
  43. N. Alikhani, M. Farhadian, A. Goshadrou, S. Tangestaninejad, P. Eskandari, Photocatalytic degradation and adsorption of herbicide 2,4-dichlorophenoxyacetic acid from aqueous solution using TiO2/BiOBr/Bi2S3 nanostructure stabilized on the activated carbon under visible light, Environ. Nanotechnol. Monit. Manage., 15 (2021) 100415, doi: 10.1016/j.enmm.2020.100415.
  44. G.R. Dillip, A.N. Banerjee, V.C. Anitha, B. Deva Prasad Raju, S.W. Joo, B.K. Min, Oxygen vacancy-induced structural, optical, and enhanced supercapacitive performance of zinc oxide anchored graphitic carbon nanofiber hybrid electrodes, ACS Appl. Mater. Interfaces, 8 (2016) 5025–5039.
  45. V. Bharathi, M. Sivakumar, R. Udayabhaskar, H. Takebe, B. Karthikeyan, Optical, structural, enhanced local vibrational and fluorescence properties in K-doped ZnO nanostructures, Appl. Phys. A, 116 (2014) 395–401.
  46. M. Abdennouri, A. Elhalil, M. Farnane, H. Tounsadi, F.Z. Mahjoubi, R. Elmoubarki, M. Sadiq, L. Khamar, A. Galadi, M. Baâlala, M. Bensitel, Y. El Hafiane, A. Smith, N. Barka, Photocatalytic degradation of 2,4-D and 2,4-DP herbicides on Pt/TiO2 nanoparticles, J. Saudi Chem. Soc., 19 (2015) 485–493.
  47. H. Lee, S.H. Park, Y.-K. Park, S.-J. Kim, S.-G. Seo, S.J. Ki, S.-C. Jung, Photocatalytic reactions of 2,4-dichlorophenoxyacetic acid using a microwave-assisted photocatalysis system, Chem. Eng. J., 278 (2015) 259–264.